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1. Introduction 

New technologies are invented by a few but 
change the life of everyone. The development 
of mRNA vaccines is halting COVID-19 deaths 
and hospitalisations. Intelligent machines drive 
cars and read lung scans. They can also predict 
what we will want to listen to, watch or buy 
next better than our spouse or lifelong friends. 
Developing controlled nuclear fusion could 
solve our energy needs. As Brynjolfsson and 
McAfee (2014) put it, technological change has 
bent the curve of human history like nothing 
else before. But who builds the technologies 
that get to change everyone’s lives? Who de-
cides on the core values and ethical considera-
tions that get embedded into new products? It 
turns out that one of the most striking features 
of today’s complex world is that innovation is in-
creasingly consumed globally while increasingly 
produced locally.

So where does innovation come from? Large 
cities, mainly. Tokyo, Seoul, San Francisco, 
Paris and Osaka alone account for more than 
20 %  of all new inventions granted by the Euro-
pean Patent Office (Paunov et al., 2019). This is 
a staggering number. We know from economic 
geography and innovation studies that urban 
environments make it possible to share costly 

infrastructures, match specialised professionals 
with cutting-edge organisations and provide 
multiple learning channels (Duranton and Puga, 
2004). There is little doubt that – more than oth-
er economic activities – innovation thrives with 
proximity (Boschma, 2005). But as society 
evolves and we keep pushing knowledge fron-
tiers, we start noticing a surprising pattern. The 
most transformative of all scientific and tech-
nological fields, such as biotech and IT, are also 
the most spatially concentrated (Balland et al., 
2020). 

Although a lot has been written about the spa-
tial concentration of innovation, a large piece 
of the puzzle is still missing in understanding 
the big picture and adopting the research and 
innovation policy we need in today’s hypercon-
nected world. I adopt complex systems think-
ing to put forward the idea that the massive 
dual spatial footprint we observe is a reflection 
of structural features of our world. The main 
idea of this chapter is that when the world 
becomes more complex, knowledge consump-
tion becomes more global and knowledge pro-
duction becomes more local. By complexity, I 
mean that more and more economic actors are 
becoming interdependent. This, in turn, creates 

Summary

This chapter examines theoretically and empiri-
cally the spatial concentration of innovation in 
EU regional ecosystems. It proposes a detailed 
geography of patent distribution in several 
strategic areas and key technologies such as 
artificial intelligence (AI), blockchain, quantum 
computing, batteries, hydrogen, mRNA and 
oncology diagnostics and treatments, and 

looks at the complementarities across EU 
regions. It uses an economic complexity 
approach and regional network analysis to 
assess new opportunities for collaboration 
across EU regions and optimise knowledge 
sharing to increase the competitiveness 
of the EU in strategic areas and some key 
technologies.
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structures that hide fundamental properties that 
shape a wide range of socio-economic outcomes 
(Hidalgo, 2021; Balland et al., 2022). 

Linking increasing complexity and spatial con-
centration has three major implications for re-
search and innovation policy. First, the reality 
of knowledge concentration requires putting 
regions and cities at the heart of the innova-
tion strategy of large countries and economic 
zones. Second, the increasingly global nature 
of knowledge consumption means that regions 
compete based on the global value of their 
products. There is no room for second-best. 
France and Germany cannot compete with Chi-
na and the USA, but Europe can. The European 
system of innovation is a knowledge network 
of regions. We need to implement an innova-
tion policy that is coherent with this reality 
and focus on stimulating links between regions 
to scale high-quality products and accelerate 
leadership towards climate neutrality and the 
digital transition. A third implication of this 
complex world for innovation policy is that it is 
becoming impossible for political leaders and 

policymakers to fully understand new techno-
logical landscapes and to systematically as-
sess which regional ecosystems are the most 
valuable for specific technologies. We need 
new tools. I will introduce how graph-based 
machine learning (GBML) can complement hu-
man intelligence to design sound policy in a 
complex world. 

In section 2, I will discuss the theoretical foun-
dation of why innovation concentrates in a com-
plex world. In section 3, I will provide empirical 
evidence on the spatial concentration of inno-
vation in EU regional ecosystems. Section 4 will 
focus on how to leverage regional ecosystems 
with human and artificial intelligence. Section 
5 will show how this recommender system can 
be used to assess potential new opportunities in 
key technologies such as AI, blockchain, quan-
tum computing, batteries, hydrogen, mRNA and 
oncology diagnostics and treatments. Section 6 
will conclude and summarise key implications 
for research and innovation policy.
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2.  Why a more complex world accelerates 
the concentration of innovation

1 Spatial inequality has been documented to be on the rise across the world and to fuel populism and social unrest (Rodríguez-
Pose, 2018). More complex and interdependent economic structures create the leverage conditions that condition the rise 
of inequality within and between regions.

2 It is a feature of Web 2.0 and is predicted to be disrupted by blockchain technologies, decentralisation and the evolution 
towards Web 3.0.

If you had asked prominent economists, policy-
makers or business executives at the dawn of 
the internet, few would have predicted the mer-
ciless monopoly of digital giants such as Goog-
le, Amazon, Netflix, Alibaba or Tencent. Digital 
technologies were supposed to flatten the world. 
Everyone, everywhere, would get a chance to 
collaborate and create technologies consumed 
on the other side of the planet. This vision turned 
out to be dramatically wrong. Today’s reality is 
that innovation is increasingly consumed global-
ly while at the same time increasingly produced 
locally. Most of the rich Western world con-
sumes Gmail or Netflix products on a daily ba-
sis, but the AI that powers their technology only 
comes from tiny pockets within Silicon Valley, 
Seattle or Boston. Geography matters less and 
less on the demand side but more and more on 
the supply side. This is the worst-case scenario 
for spatial inequality1. As the global consumer 
base widens, it fuels the growth of a few local 
peaks of Richard Florida’s spiky world. The wider 
the base, the higher the peaks. Paradoxically, a 
more global world has also much more marked 
regional features (Storper, 1997). 

Why does spatial inequality emerge as a result 
of the increasing complexity of our world? Let us 
first examine global demand. Digital technolo-
gies and falling transportation costs of physical 
goods allow products to be widely distributed. 
That means that it matters less and less where 
consumers are located – global corporations 
can access everyone’s wallets. Global competi-
tion is emerging in more and more industries. 
This is completely different from non-tradable 
industries such as the hairdressing business. 

A hairdresser in Kraków does not compete with 
a hairdresser in Porto, even it provides a much 
better and cheaper service. But customers in a 
global, interconnected world do not care about 
the second best because they can access all 
providers equally. Email services, for instance, 
do compete globally. Gmail has 1.5 billion ac-
tive users worldwide, Outlook about 400 million, 
Yahoo, 200 million. This is an incredibly skewed 
distribution, where the winner takes all and the 
rest eat the crumbs. 

So the fact that our world is incredibly intercon-
nected allows for the possibility for the few win-
ners to take it all. Things get even worse when 
the quality of the product depends on data col-
lection. A small initial comparative advantage 
can quickly compound into an absolute monop-
oly. Slightly better initial recommendations of 
an AI system will attract more users. More us-
ers will automatically lead to more data for the 
digital platform. What comes next is that more 
data will lead to better predictions and therefore 
more users, and that this self-reinforcing feed-
back loop will not stop until a specific segment 
of the digital market is almost entirely absorbed 
by a handful of global giant organisations (Lee, 
2018; Tucker, 2019; Catalini and Gans, 2020; 
Aral, 2021). Google has a monopoly of website 
recommendations in the West and Baidu in Chi-
na; Amazon in product recommendations in the 
West; Alibaba in China. The logic is the same for 
other digital products2. 
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So far, we have discussed why the structural 
features of our world create the possibility for 
superstars entrepreneurs, products and corpo-
rations to emerge. It would not be too much of a 
problem if these winners of the global economy 
were also distributed randomly in the world. The 
problem is that they also concentrate in a few 
places. Digital goods are highly complex activi-
ties that concentrate in large cities, the knowl-
edge hubs of the global economy (Balland et 
al., 2020). Complex products require a deeper 
division of knowledge, which forces individuals 
to narrow down their expertise and specialise 
(Jones, 2009). In fact, there is a limit to how 
much knowledge can be stored in someone’s 
head (Hidalgo, 2015). This division of knowledge 
creates high coordination costs since special-
ised knowledge alone is useless. It needs to be 

connected back to other specialised individuals, 
which is why we have witnessed an increasing 
size of teams in science and innovation (Wuchty 
et al., 2007). Cities – in particular, the largest 
ones – help to solve the coordination problems 
created by the division of knowledge by creating 
multiple mixing and matching opportunities. 

The rise of the winner-takes-all economy results 
in increasing complexity, a more global world 
of knowledge consumption and a more local 
world of knowledge production, as summarised 
in Figure 1. The magnitude of this monopolistic 
structure in strategic products and technologies 
shapes the spatial nature of innovation, which 
we will document in the next section. These pat-
terns call for new principles of innovation policy 
and new tools.

Figure 14-1: The rise of the winner-takes-all economy

Science, Research and Innovation Performance of the EU 2022 
Stats.: https://ec.europa.eu/assets/rtd/srip/2022/figure-14-1.xlsx
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3.  Regions are the engines of the European  
innovation system 

3  The geography of innovation can also be analysed using participation in R&D projects, venture-capital deals (Crunchbase, 
DealRoom) or GitHub repositories for instance.

4  An interactive version of this map is available here: https://www.paballand.com/asg/srip/map-ict-pc.html
5  This map uses data from Balland and Boschma (2021).

The most accepted approach to systematically 
assessing the spatial distribution of new tech-
nologies is to analyse patent documents. Even 
though patented inventions do not capture all 
forms of invention and knowledge production, 
they contain unique information that has been 
extensively used in innovation studies3 (Jaffe et 
al., 1993; Audretsch and Feldman, 1996; Hall 
et al., 2001; Thompson and Fox-Kean, 2005). 
In exchange for the codification of and open-
ness in how technology is produced, patent of-
fices over the world grant the right to exclude 
others from the commercial exploitation of 
the invention. This allows the systematic doc-
umentation of new technologies that no other 
form of data allows. 

Two key pieces of information are available in 
patent documents to map innovation ecosys-
tems accurately and systematically and to fur-
ther inform innovation policy: what is invented 
and where it comes from. Both pieces of in-
formation are available at a very fine-grained 
resolution. The place of residence of inventors 
gives the detailed geography of inventions, 
while each patent is meticulously classified 
within 250 000 technological categories (inter-
national patent classification, IPC). Combining 
these two key pieces of information allows us 
to map the geography of innovation in Europe 
precisely. In this chapter, I use the OECD REG-
PAT 2021 database (Maraut et al., 2008). The 
REGPAT dataset provides detailed information 
on patents filed at the European Patent Office 
(EPO) and at the World Intellectual Property Or-
ganization (WIPO) since 1978.

What does the geography of innovation look 
like in Europe? Figure 24 simply maps the num-
ber of patents per capita in information and 
communication technologies during the period 
2014-20185. What is clear from this map is 
the strong evidence of spatial concentration of 
inventive activities, as also extensively shown 
in part I of this report (Section 2.2 – Zoom in 
– Regional analysis). The European informa-
tion and communications technology (ICT) in-
novation system is formed by leading regions 
Stockholm, South Sweden, Helsinki-Uusimaa, 
Mittelfranken, Oberbayern, North Brabant, 
Brittany and Île de France. Île de France, Ober-
bayern, Stockholm, Mittelfranken and Brittany 
are also the top five regions in terms of the 
absolute number of ICT patents, and together 
account for no less than 30 % of the ICT pat-
ents of the EU-27 regions. These leading re-
gions are key to establishing the global sov-
ereignty of EU technologies. But what is also 
fascinating in this map is that country borders 
are almost impossible to distinguish. Europe-
an regions, not countries, are where innovation 
truly concentrates and therefore should be the 
focus of innovation policy. 

This concentration pattern becomes even 
stronger when we unpack the level of complex-
ity of technologies. This distinction is not trivi-
al because complex technologies are the ones 
that allow for the most leverage of economic 
structures and therefore the ones that are the 
most critical for future economic growth (Hi-
dalgo and Hausmann, 2009; Hidalgo, 2021; 
Balland et al., 2022). As mentioned earlier, 
complexity refers to the division of knowledge 
behind the creation of a specific technology. 
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A technology that a human can invent entirely by 
herself is, by our definition, simple. Now, the more 
you build on others’ knowledge, skills and inputs, 
the more complex the technology is. A technology 
that involves many actors interlinked in very spe-
cific ways is more complex. There are many ways 
to measure complexity (Fleming and Sorenson, 
2001; Hidalgo, 2021) but in this paper, we use the 
standard eigenvector reformulation initially pro-
posed by Hidalgo and Hausmann (2009) for trad-
ed products and recently adapted for patent data 

6 For an extensive analysis of the geography of knowledge complexity in Europe, see Pintar and Scherngell (2021)
7 An interactive version of this map is available here: https://www.paballand.com/asg/srip/bottom25.html 

by Balland and Rigby (2017). This method is pure-
ly outcome-based. It brings together the diversity 
of regions and the ubiquity of technologies they 
produce to identify the technologies that a lot of 
regions would like to produce but very few can.

Figure 3 maps the geography of complex and 
non-complex patents in European regions from 
2015 to 20206. On the left panel, we can see 
the distribution of the least complex patents7  
(bottom 25 %) and on the right, the most com-

Figure 14-2: ICT regional ecosystems in Europe

Science, Research and Innovation Performance of the EU 2022
Stats.: https://ec.europa.eu/assets/rtd/srip/2022/figure-14-2.xlsx
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plex ones8 (top 25 %). We can see two very dif-
ferent geographies. Complex patents are very 
highly concentrated while the least complex 
ones are much more dispersed across Europe-
an regions. The regions that have a dispropor-
tionate number of complex patents are mainly 
the capital regions such as Île de France, Inner 
London, Stockholm or Madrid.

To systematically document the unequal dis-
tribution of technologies we turn to a simple 
index of spatial concentration: the Gini coeffi-
cient. The Gini coefficient is defined as a ratio 

8 An interactive version of this map is available here: https://www.paballand.com/asg/srip/top25.html
9 The analysis of biological materials; audio-visual technology; basic communication processes; basic materials chemistry; bi-

otechnology; chemical engineering; civil engineering; computer technology; controls; digital communications; electrical ma-
chinery, apparatus, energy; engines, pumps, turbines; environmental technology; food chemistry; furniture, games; handling; 
IT methods for management; machine tools; macromolecular chemistry, polymers; materials, metallurgy; measurement; 
mechanical elements; medical technology; micro-structural and nanotechnology; optics; organic fine chemistry; other con-
sumer goods; other special machines; pharmaceuticals; semiconductors; surface technology, coatings; telecommunications; 
textile and paper machines; thermal processes and apparatus; transport. These technologies are defined from the updated 
Cooperative Patent Classification (CPC) classification proposed in Schmoch (2008).

10 The technologies are identified from text mining patent documents and the CPC classification, following the method of 
Balland and Boschma (2021).

of two surfaces derived from the Lorenz curve 
and ranges from 0 (perfect spatial equality 
where every region produces the same num-
ber of patents) to 1 (perfect spatial inequality 
where one region produces all patents). 

In Figure 4, I analyse, for 2015-2020, the spa-
tial inequality behind the production of 35 core 
technologies9 as originally defined by Schmoch 
(2008), together with seven key technologies for 
European technological sovereignty: AI, block-
chain, quantum computing, batteries, hydrogen, 
mRNA and Oncology10. 

Figure 14-3: The geography of complex patents in Europe

Science, Research and Innovation Performance of the EU 2022
Stats.: https://ec.europa.eu/assets/rtd/srip/2022/figure-14-3.xlsx

Bottom 25 % complex patents Top 25 % complex patents

https://ec.europa.eu/assets/rtd/srip/2022/figure-14-3.xlsx
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The five most concentrated fields are quantum 
computing, digital communication, basic commu-
nication processes, semiconductors and AI. These 
are also highly complex fields that are associated 
with high talent pools and capital investments. 
The five most spatially dispersed fields, however, 
are less knowledge-intensive activities: civil engi-
neering, food chemistry, thermal processes and 
apparatus, furniture and games, and analysis of 
biological materials. Again, from this exercise, it 
is clear that the most complex fields are also the 
most spatially concentrated.

11 In the network presented in Figure 4, we only display links between regions (n=74) that have more than 10 000 internal 
links. This is purely for visualisation purposes. We also use a maximum spanning-tree algorithm to map the backbone of the 
network and to avoid isolated nodes. Some primary links are therefore removed for visualisation purposes. The results are 
qualitatively similar when plotting the whole network of European regions. An interactive version of this map is available 
here: https://ec.europa.eu/assets/rtd/srip/2022/figure-14-4.xlsx

Another fundamental way to document the 
spatial distribution of knowledge is not to look 
at regions in isolation from each other but to 
analyse the European interregional system of 
innovation. In Figure 5, we plot the co-inven-
tor ties between regions11, for all technologies. 
The results are striking. When looking at col-
laborations, country borders become extreme-
ly marked. The top 10 connections of Île de 
France – the EU regions with the most internal 
collaborations – are all other French regions. 

Figure 14-4: Spatial concentration of core technologies
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The same goes for Upper Bavaria and other 
EU regions. European regions disproportion-
ally favour same-country collaborations over 
pan-European ones. Based on the maps pre-
sented in Figures 2 and 3, we would expect 
the top EU regions to be strongly connected. 
This fact that they are not signals a system 
failure in the innovation systems that justifies 
higher-policy-level intervention to scale up EU 
technologies and achieve global leadership in 
the twin transition.

We have learned two key facts about the ge-
ography of innovation in Europe. First, technol-
ogies – especially the most complex ones – are 
heavily concentrated in a few regional ecosys-
tems. It is essential to take into account this 

12 Place-based policy is often meant as policy that helps lagging regions to catch up (Barca et al., 2009). Here, we mean 
place-based innovation policy in the sense of policy that leverages regional ecosystems to generate EU global leadership.

real-world pattern and to design an EU-wide 
place-based12 innovation policy. Second, the 
EU regional innovation system does not reflect 
this geography when it comes to interregional 
collaborations. 

This gap signals a poor knowledge-capability 
matching that urgently needs to be reduced 
with the right network-based innovation policy 
tools. In the next section, we turn to the use of 
modern graph-based machine learning tools to: 

 ȧ identify promising knowledge ecosystems;

 ȧ identify the most valuable interregional 
connections. 

Figure 14-5: The EU regional system of innovation

Science, Research and Innovation Performance of the EU 2022
Stats.: https://ec.europa.eu/assets/rtd/srip/2022/figure-14-5.xlsx

https://ec.europa.eu/assets/rtd/srip/2022/figure-14-5.xlsx
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4.  Leveraging regional ecosystems with human  
and artificial intelligence

A large part of successful innovation policy at 
the scale of large integrated markets such as 
Europe, the USA or China comes down to si-
multaneously betting on the right technologies 
and the right places. Prioritising investments 
is key to accelerating global leadership to-
wards climate neutrality and digital transitions 
while developing EU sovereignty in key tech-
nologies. Shall we mainly fund AI? Blockchain? 
Nuclear power? Solar energy? And how much 
should go to each technology? Once the overall 
plan is defined at the level of large countries 
or economic zones (EU, USA, China) the next 
important step is to define who receives the 
funding (regions and cities). This is also critical 
to enabling diversification of regions and stim-
ulating their long-term economic development 
(Boschma, 2018; Hidalgo et al., 2018). 

But simultaneously betting on the right tech-
nologies and the right places is an increasingly 
difficult exercise. It was already challenging 
in a less globalised world characterised by 
slower technological change but today, there 
are too many new complex technologies and 
global knowledge ecosystems to assess intu-
itively what the optimal investment really is 
(Balland et al., 2019). If the goal is to achieve 
EU leader ship in AI for instance, is it wiser to 
focus investments on the Île de France, Bavaria 
and Budapest ecosystems or Milan, Bucharest 
and Eindhoven? These choices matter tremen-
dously. Domain experts provide very valuable 
knowledge but cannot have equal knowledge of 
all new technologies and their geographies. It is 
getting harder and harder to flag risky strategies 
and identify hidden gems. We need better tools. 

I argue that modern R&I policymaking needs 
to combine human and artificial intelligence to 
deliver more optimal public investments. The 
foundational principles of such AI tools already 
exist in GBML. Collaborative filtering, in particu-
lar, has shown that there is much more predic-
tive power in economic and social structures 
than in demographic variables. To put it simply, 
gender, height, country of origin and other in-
dividual-level variables are poor predictors of 
music tastes or purchasing patterns. But it is 
possible to automate predictions (filtering) by 
also analysing preferences from many other 
users (collaborating). 

Similar algorithmic principles that govern Am-
azon, Netflix or Spotify prediction machines 
can also be applied to the prioritisation of 
public investment decisions in research and 
innovation policy. These tools are increasingly 
applied in the context of the smart specialisation 
strategy and green policy initiatives (Balland et 
al., 2019; Balland et al., 2021; Deegan et al., 
2021; Mealy and Teytelboym, 2020; Uyarra 
et al., 2020; Montresor and Quatraro, 2020; 
Hassink and Gong, 2019) by building on dec-
ades-long academic literature on economic 
complexity and economic geography. One of 
the key findings of this literature is that region-
al diversification happens through the principle 
of relatedness (Hidalgo et al., 2007; Hidalgo 
et al., 2018). Regions develop new products 
and technologies by recombining pre-existing 
available capabilities. Mapping existing ca-
pabilities in a region allow estimating the 
distance with any new domain, measured by 
the concept of relatedness density. 
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The particular way technologies are connected 
to each other indicates how easy it is for a re-
gion, country or individual to move from one to 
the other. It represents hidden constraints that 
shape our decisions and opportunities. Figure 
613 is a graph-based representation of how the 
42 technologies presented in section 3 are re-
lated to each other from 2015 to 2020. Previ-
ous research has mapped connections between 
products (Hidalgo et al., 2007), scientific fields 
(Boschma et al., 2014) or job categories (Farinha 
et al., 2019). Here, we use a recombination of 

13 An interactive version of this map is available here: https://www.paballand.com/asg/srip/tech-space.html

subtechnologies on the same patents to produce 
this graph. We can see how the digital technol-
ogies (blue) of blockchain, AI or quantum com-
puting cluster together, while health-related 
technologies (red) such as mRNA or oncology 
diagnostics and treatments are grouped in a 
different quadrant of this space. A fine-grained 
resolution of this technology space (we can go 
up to 250 000 technologies) allows mapping 
of the regional ecosystems that are the most 
promising for specific technologies. 

Figure 14-6: The technology space

Science, Research and Innovation Performance of the EU 2022 
Stats.: https://ec.europa.eu/assets/rtd/srip/2022/figure-14-6.xlsx

https://ec.europa.eu/assets/rtd/srip/2022/figure-14-6.xlsx
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By mapping links between technologies and 
the current knowledge structure of EU regional 
ecosystems, it becomes possible to compute 
relatedness density and predict the growth 
potential of new technologies. This is a huge 
breakthrough because it means that we do not 
need a place to produce knowledge to actually 
know if it can produce knowledge in the future. 
Relatedness density indicates – for any domain 
– the shares of related technologies that are 
present in a region. To illustrate this princi-
ple with a simplified example, let us say that 
10 technologies are related to AI and eight of 
these technologies can be found in Paris. The 
relatedness density between AI and Paris is 
8/10 = 80 %. Regions with the highest related-
ness density are the strongest candidates for 
prioritising funding. 

Figure 7 presents relatedness density maps14  
that indicate which EU regions are in the best 
position to lead technological change in sev-
en key technologies. We can see that each 
technology is characterised by a very specif-
ic geography. Île de France, Oberbayern and 
London have core technologies related to AI 
but when it comes to batteries, Rhone-Alpes, 
Stuttgart or Trondelag (Norway) are better po-
sitioned. mRNA connects most to technologies 
found in the capital region of Denmark, in Berk-
shire, Buckinghamshire and Oxfordshire or in 
Languedoc-Roussillon. 

14 All relatedness density maps are available as interactive HTML files:  https://www.paballand.com/asg/srip/maps/artificial-in-
telligence.html 

https://www.paballand.com/asg/srip/maps/batteries.htmlhttps://www.paballand.com/asg/srip/maps/blockchain.html 
https://www.paballand.com/asg/srip/maps/hydrogen.html 
https://www.paballand.com/asg/srip/maps/mrna.html 
https://www.paballand.com/asg/srip/maps/oncology.html 
https://www.paballand.com/asg/srip/maps/quantum-computing.html 

By plotting relatedness density against a re-
gional variable, it is possible to introduce more 
nuanced and realistic trade-offs that are fun-
damental to real-world policymaking. Relat-
edness density is a region-technology-level 
variable, so a region can have a high level of 
relatedness density around a given technology 
(AI), but very low around another one (biotech). 
The regional variable would be, by definition, 
fixed across regions. For illustration purposes, 
we will discuss regional complexity, which is 
a predictor of long-run regional development, 
but it could also be GDP or patents per capita. 

Figure 8 presents a framework that indicates 
the position of all EU regions in terms of their 
relatedness density around a specific technolo-
gy (let us say AI, along the x-axis) and the over-
all regional complexity of the region (y-axis). 
On the top-right quadrant (excellence policy) 
we have world-class regions (complex) that are 
also in the best position to become leaders in 
AI. These are safe bets, but they come with the 
potential drawback of making strong regions 
even stronger. The bottom-right corner (in-
clusive policy) shows regions that might not 
come as quickly to mind but that have strong 
potential in this technology. Betting on these 
regions comes with the added benefit of re-
ducing disparities. The two other quadrants 
do not make as much sense from a structural 
approach. 
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Figure 14-7: Relatedness density maps

Science, Research and Innovation Performance of the EU 2022
Stats.: https://ec.europa.eu/assets/rtd/srip/2022/figure-14-7.xlsx
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The top-left (winner-takes-all policy) indi-
cates regions that are already very strong (over-
all) and do not have a specific edge in AI. Talent, 
regional brand, pre-existing capital or infra-
structure can explain such an investment. The 
bottom-left (crutch policy) is also to be avoid-
ed as it is very unlikely that the support can ever 
kick-start organic growth in these regions. It 
does not mean that these regions should be left 
behind. But from an innovation policy perspec-
tive, these regions should focus on technologies 
in which they have related capabilities.

A carefully designed R&I policy should be tech-
nology-specific and empower relevant knowl-
edge ecosystems. It is also important to stim-
ulate interregional linkages. Links that are the 
most impactful for regional leadership and inno-
vation are the ones that build on complementa-
ry assets (Balland and Boschma, 2021). And as 
shown in section 3, European regions seem to 

15 An interactive version of this map is available here: https://www.paballand.com/asg/srip/ai-occitanie.html

disproportionally favour within-country collabo-
ration. To stimulate pan-European collaboration, 
we need a strong innovation policy framework 
that brings European regions together. 

Balland and Boschma’s (2021) measure 
analyses gaps and similarities between tech-
nology spaces of all EU regions. It is always 
region-tech-region specific (three-way). With 
this method, it is possible to assess the com-
plementarity potential of a given region with 
any other region in a given technology. Let us, 
for instance, evaluate the complementarity po-
tentials of EU regions with the Occitanie region 
in the field of AI (as indicated in Figure 915). To 
put it simply, let us say that AI is related to 100 
other technologies (in a more fine-grained ver-
sion of the overall technology space presented 
in Figure 6). Occitanie has expertise in 30 out 
of these 100 technologies, leading to a level 
of relatedness density between Budapest and 

Figure 14-8: Prioritising investments in regional ecosystems

Science, Research and Innovation Performance of the EU 2022
Stats.: https://ec.europa.eu/assets/rtd/srip/2022/figure-14-8.xlsx
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AI of 50 % (as presented in Figure 7 and in the 
x-axis of Figure 8). Analysing the portfolio of 
other EU regions reveals that Budapest has ex-
pertise in 49 other technologies that are related 
to AI but that Occitanie does not have expertise 
in. Linking to Budapest, Occitanie could compen-
sate for the lack of regional knowledge, and re-
latedness density would go up by 49 %. This 

49 % is the level of complementarity between 
Occitanie and Budapest in AI. Please note that it 
would change for biotech or any other technolo-
gies and is also not symmetric. If Occitanie only 
has technology that Budapest already has, then 
the complementarity score between Budapest 
and Occitanie in AI would be exactly 0 %. 

Figure 14-9: Complementarity maps between Occitanie and other EU regions in AI

Science, Research and Innovation Performance of the EU 2022
Stats.: https://ec.europa.eu/assets/rtd/srip/2022/figure-14-9.xlsx
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6. Conclusion 

The overarching idea of this chapter is that 
new technologies are extremely concentrated 
in space. I argue that this spatial concentra-
tion is increasing over time as a result of the 
increasing complexity and interconnectivity of 
our economic system. I discuss the theoretical 
mechanisms but also empirically demonstrate 
that this is especially true for the most trans-
formative technologies, such as AI, blockchain 
or advanced clean technologies. A few regional 
knowledge ecosystems are responsible for most 
innovations that shake the world and impact the 
lives of all citizens. The most important impli-
cation of this real-world pattern is that – more 
than ever – we need an ambitious innovation 
policy that truly leverages the spatial dimension 
of innovation. 

To develop such a region-based innovation pol-
icy we need tools. I also argue that today’s sci-
ence and technology world is far too complex 
for policymakers and key stakeholders at the 
EU, regional or national level to systematically 
map knowledge ecosystems and the links be-
tween them. GBML, the technology behind the 
recommendation systems of Amazon, Netflix 
and Spotify, can be used to support innovation 
policy and public-investment decisions. I show 
how GBML can map current structures, predict 
future development paths and also predict best 
matches between regions based on systemic 
complementarity analyses. 

Beyond understanding key principles and pat-
terns of the geography of innovation, we also 
need new policy frameworks and instruments. 
We need to support local governments in set-
ting up ambitious science and technology vi-
sions, orchestrating local ecosystems, attract-
ing external players and connecting the dots 
between local stakeholders. The type of policy 
instruments chosen could connect to the current 
smart specialisation policy of DG REGIO. This 

makes a lot of sense since the seminal smart 
specialisation concepts outlined by Foray, David 
and Hall (2009) were developed as an innova-
tion policy and discussed extensively within DG 
RTD. Today, the smart specialisation strategy 
is a place-based policy (Barca et al., 2012) in 
the sense of reducing EU regional disparities by 
supporting regional change. This is an excellent 
initiative that is becoming increasingly armed 
with advanced methodological tools. We need 
similar instruments with a very different goal. 
We need a place-based innovation policy that 
has the clear objective of pushing further over-
all EU technological sovereignty by betting on 
the regional ecosystems that are the fittest to 
achieve global leadership. Regions – not pro-
jects – could therefore receive funding based on 
an overall excellence- and knowledge-matching 
strategy. It would all be about prioritising tech-
nologies to invest in and outlining an execution 
plan on how to make it happen.  

But to truly develop EU sovereignty in strate-
gic technologies, a higher level of leadership 
is needed. The consequence of the global con-
sumption of knowledge is that we need scale to 
develop tech champions, especially in the dig-
ital sector. The EU has all it takes to compete 
with China and the USA, but France or Germany 
cannot go alone. The EU needs to be the cap-
tain, setting up overall innovation strategy and 
building on a system of regions to make it work. 
But what is clear from the analysis of interre-
gional linkages presented in this paper is that 
the EU system of innovation is far from being 
optimally structured. There are an excessive 
number of within-country collaborations and we 
are far from a true common innovation area. 
While one would expect the larger regions or 
those with the most complementary structures 
to be the most connected (as is the case in the 
USA and China), this strong country-border ef-
fect considerably harms EU innovation potential. 



CH
A

PTER 14
767

To thrive in the 21st century, we need strong EU 
leadership in priority-setting and coordination 
efforts. Attracting global talent and granting 
EU-wide special visas, for instance, would not 
only be a way to boost innovation but also to 
break a shared historical context that prevents 
cross-country connections. More directly, we 
need instruments that build a true European 
community by encouraging mobility (in the spirit 
of the Erasmus programme and the framework 
programmes). What we need is a true Airbus 
moment, where the division of knowledge at the 
level of EU regions allows us to scale and develop 
globally competitive complex products. 
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