Synopsis of RFCS Projects
2018 – 2021

Full list of projects co-financed by the Research Fund for Coal and Steel of the European Union

11 January 2022
Synopsis of RFCS Projects
2018 – 2021

Full list of projects co-financed by the Research Fund
for Coal and Steel of the European Union
<table>
<thead>
<tr>
<th>Project Acronym</th>
<th>Technical Group</th>
<th>Project Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AtHyCor</td>
<td>TGA3</td>
<td>101034041 (2021)</td>
<td>92</td>
</tr>
<tr>
<td>ATLANTIS</td>
<td>TGK2</td>
<td>101034022 (2021)</td>
<td>38</td>
</tr>
<tr>
<td>AUSSENS</td>
<td>TGA2</td>
<td>899391 (2020)</td>
<td>73</td>
</tr>
<tr>
<td>AUSTRONG</td>
<td>TGA3</td>
<td>101034012 (2021)</td>
<td>94</td>
</tr>
<tr>
<td>AutoSurveillance</td>
<td>TGA5</td>
<td>847202 (2019)</td>
<td>145</td>
</tr>
<tr>
<td>BackCap</td>
<td>TGK2</td>
<td>101034000 (2021)</td>
<td>37</td>
</tr>
<tr>
<td>BIOFIRE</td>
<td>TGA3</td>
<td>847229 (2019)</td>
<td>102</td>
</tr>
<tr>
<td>BLEMAB</td>
<td>TGA1</td>
<td>899263 (2020)</td>
<td>52</td>
</tr>
<tr>
<td>BURWEAR</td>
<td>TGA2</td>
<td>8998817 (2020)</td>
<td>70</td>
</tr>
<tr>
<td>BUSDUCT</td>
<td>TGK1</td>
<td>847253 (2019)</td>
<td>25</td>
</tr>
<tr>
<td>CentriClean</td>
<td>TGA2</td>
<td>847341 (2019)</td>
<td>77</td>
</tr>
<tr>
<td>CleanEx</td>
<td>TGA2</td>
<td>847318 (2019)</td>
<td>79</td>
</tr>
<tr>
<td>COACH</td>
<td>TGA1</td>
<td>899318 (2020)</td>
<td>53</td>
</tr>
<tr>
<td>COALTECH2051</td>
<td>TGK2</td>
<td>794369 (2018)</td>
<td>45</td>
</tr>
<tr>
<td>CONSOLCAST</td>
<td>TGA2</td>
<td>799295 (2018)</td>
<td>83</td>
</tr>
<tr>
<td>ControllInSteel</td>
<td>TGA5</td>
<td>899208 (2020)</td>
<td>138</td>
</tr>
<tr>
<td>CRASHTOUGH</td>
<td>TGA3</td>
<td>800693 (2018)</td>
<td>105</td>
</tr>
<tr>
<td>Crystal</td>
<td>TGA3</td>
<td>899406 (2020)</td>
<td>100</td>
</tr>
<tr>
<td>CuttingEdge4.0</td>
<td>TGA4</td>
<td>847213 (2019)</td>
<td>123</td>
</tr>
<tr>
<td>CYBERMAN 4.0</td>
<td>TGA5</td>
<td>800657 (2018)</td>
<td>149</td>
</tr>
<tr>
<td>DD-MET</td>
<td>TGK1</td>
<td>847338 (2019)</td>
<td>23</td>
</tr>
<tr>
<td>DeepQuality</td>
<td>TGA5</td>
<td>101034037 (2021)</td>
<td>135</td>
</tr>
<tr>
<td>DELIGHTED</td>
<td>TGA3</td>
<td>899332 (2020)</td>
<td>98</td>
</tr>
<tr>
<td>DESDEMONA</td>
<td>TGA4</td>
<td>800687 (2018)</td>
<td>128</td>
</tr>
<tr>
<td>DevH2forEAF</td>
<td>TGA1</td>
<td>101034081 (2021)</td>
<td>50</td>
</tr>
<tr>
<td>DISSIPABLE</td>
<td>TGA4</td>
<td>800699 (2018)</td>
<td>127</td>
</tr>
<tr>
<td>DREAMERS</td>
<td>TGA4</td>
<td>101034015 (2021)</td>
<td>113</td>
</tr>
<tr>
<td>Dynaustab</td>
<td>TGA3</td>
<td>899482 (2020)</td>
<td>101</td>
</tr>
<tr>
<td>DynReAct</td>
<td>TGA5</td>
<td>847203 (2019)</td>
<td>144</td>
</tr>
<tr>
<td>E-CO-LadleBrick</td>
<td>TGA5</td>
<td>847249 (2019)</td>
<td>143</td>
</tr>
<tr>
<td>ECOSLAG</td>
<td>TGA1</td>
<td>800762 (2018)</td>
<td>64</td>
</tr>
<tr>
<td>EnerMIND</td>
<td>TGA5</td>
<td>899345 (2020)</td>
<td>141</td>
</tr>
<tr>
<td>FAILNOMORE</td>
<td>TGA4</td>
<td>899371 (2020)</td>
<td>120</td>
</tr>
<tr>
<td>FastLoRoll</td>
<td>TGA2</td>
<td>800746 (2018)</td>
<td>85</td>
</tr>
<tr>
<td>FATECO</td>
<td>TGA4</td>
<td>847284 (2019)</td>
<td>122</td>
</tr>
<tr>
<td>FIRST-WIRE</td>
<td>TGA4</td>
<td>899299 (2020)</td>
<td>117</td>
</tr>
<tr>
<td>FISHWALL</td>
<td>TGA4</td>
<td>101034083 (2021)</td>
<td>116</td>
</tr>
<tr>
<td>FLATBEND</td>
<td>TGA2</td>
<td>800730 (2018)</td>
<td>86</td>
</tr>
<tr>
<td>Project Name</td>
<td>Code</td>
<td>Code Description</td>
<td>Year Code</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------</td>
<td>---------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>FLEXGAP</td>
<td>TGA2</td>
<td>800672 (2018)</td>
<td>88</td>
</tr>
<tr>
<td>FREEDAM PLUS</td>
<td>TGA4</td>
<td>899321 (2020)</td>
<td>118</td>
</tr>
<tr>
<td>GreenDEALCO2</td>
<td>TGK2</td>
<td>101034035 (2021)</td>
<td>36</td>
</tr>
<tr>
<td>HatFlat</td>
<td>TGA2</td>
<td>101033991 (2021)</td>
<td>69</td>
</tr>
<tr>
<td>HEET II</td>
<td>TGK1</td>
<td>899469 (2020)</td>
<td>19</td>
</tr>
<tr>
<td>HIGHSPEEDGALVANIZING</td>
<td>TGA2</td>
<td>800769 (2018)</td>
<td>81</td>
</tr>
<tr>
<td>HSSF</td>
<td>TGA4</td>
<td>800763 (2018)</td>
<td>124</td>
</tr>
<tr>
<td>HycAD</td>
<td>TGA4</td>
<td>899381 (2020)</td>
<td>121</td>
</tr>
<tr>
<td>HyCon</td>
<td>TGK2</td>
<td>899471 (2020)</td>
<td>40</td>
</tr>
<tr>
<td>HYDROCOALPLUS</td>
<td>TGK1</td>
<td>800757 (2018)</td>
<td>30</td>
</tr>
<tr>
<td>HydroPick</td>
<td>TGA1</td>
<td>847256 (2019)</td>
<td>60</td>
</tr>
<tr>
<td>HYDRO-REAL</td>
<td>TGA3</td>
<td>899335 (2020)</td>
<td>99</td>
</tr>
<tr>
<td>i2Mon</td>
<td>TGK1</td>
<td>800689 (2018)</td>
<td>31</td>
</tr>
<tr>
<td>I3UPGRADE</td>
<td>TGK2</td>
<td>800659 (2018)</td>
<td>44</td>
</tr>
<tr>
<td>InCSEB</td>
<td>TGA4</td>
<td>101033984 (2021)</td>
<td>111</td>
</tr>
<tr>
<td>IndiWater</td>
<td>TGA1</td>
<td>101034072 (2021)</td>
<td>49</td>
</tr>
<tr>
<td>iINITIAI</td>
<td>TGA3</td>
<td>847165 (2019)</td>
<td>104</td>
</tr>
<tr>
<td>iTEGrated</td>
<td>TGA5</td>
<td>899248 (2020)</td>
<td>139</td>
</tr>
<tr>
<td>IntellCutProcess</td>
<td>TGA4</td>
<td>899331 (2020)</td>
<td>119</td>
</tr>
<tr>
<td>iSlag</td>
<td>TGA5</td>
<td>899164 (2020)</td>
<td>137</td>
</tr>
<tr>
<td>LASTTS</td>
<td>TGA4</td>
<td>101034038 (2021)</td>
<td>115</td>
</tr>
<tr>
<td>LIG2LIQ</td>
<td>TGK2</td>
<td>796585 (2018)</td>
<td>42</td>
</tr>
<tr>
<td>LIGHTTECH</td>
<td>TGA4</td>
<td>799787 (2018)</td>
<td>130</td>
</tr>
<tr>
<td>LOWCARBONFUTURE</td>
<td>TGA1</td>
<td>800643 (2018)</td>
<td>63</td>
</tr>
<tr>
<td>MARTBAIN</td>
<td>TGA3</td>
<td>899251 (2020)</td>
<td>95</td>
</tr>
<tr>
<td>MASTERINGROLLSII</td>
<td>TGA2</td>
<td>800748 (2018)</td>
<td>84</td>
</tr>
<tr>
<td>MEGAPLUS</td>
<td>TGK2</td>
<td>800774 (2018)</td>
<td>43</td>
</tr>
<tr>
<td>MINRESCUE</td>
<td>TGK1</td>
<td>899518 (2020)</td>
<td>22</td>
</tr>
<tr>
<td>MinSiDeg</td>
<td>TGA1</td>
<td>847285 (2019)</td>
<td>59</td>
</tr>
<tr>
<td>MiPRE</td>
<td>TGA3</td>
<td>899268 (2020)</td>
<td>97</td>
</tr>
<tr>
<td>NewTech4Steel</td>
<td>TGA5</td>
<td>800677 (2018)</td>
<td>151</td>
</tr>
<tr>
<td>ODISSEUS</td>
<td>TGK2</td>
<td>847333 (2019)</td>
<td>41</td>
</tr>
<tr>
<td>OMA</td>
<td>TGA5</td>
<td>847296 (2019)</td>
<td>142</td>
</tr>
<tr>
<td>OnlyPlastic</td>
<td>TGA1</td>
<td>899415 (2020)</td>
<td>54</td>
</tr>
<tr>
<td>OPTIDAMATOL</td>
<td>TGA3</td>
<td>101034039 (2021)</td>
<td>91</td>
</tr>
<tr>
<td>OPTILOCALHT</td>
<td>TGA2</td>
<td>847269 (2019)</td>
<td>76</td>
</tr>
<tr>
<td>Optimasteel</td>
<td>TGA5</td>
<td>839990 (2019)</td>
<td>146</td>
</tr>
<tr>
<td>PICTO</td>
<td>TGK1</td>
<td>800711 (2018)</td>
<td>29</td>
</tr>
<tr>
<td>PlasmaPilot</td>
<td>TGA1</td>
<td>899223 (2020)</td>
<td>51</td>
</tr>
<tr>
<td>PMAPIA</td>
<td>TGA2</td>
<td>800644 (2018)</td>
<td>82</td>
</tr>
<tr>
<td>PostMinQuake</td>
<td>TGK1</td>
<td>899192 (2020)</td>
<td>16</td>
</tr>
<tr>
<td>POTENTIALS</td>
<td>TGK1</td>
<td>101034042 (2021)</td>
<td>15</td>
</tr>
<tr>
<td>PROTEUS-RS</td>
<td>TGA2</td>
<td>899455 (2020)</td>
<td>74</td>
</tr>
<tr>
<td>QPINOX</td>
<td>TGA3</td>
<td>847195 (2019)</td>
<td>103</td>
</tr>
<tr>
<td>Project</td>
<td>Institute</td>
<td>Code</td>
<td>Year</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>QUALITY4.0</td>
<td>TGA5</td>
<td>788552</td>
<td>(2018)</td>
</tr>
<tr>
<td>RadiFLAT</td>
<td>TGA2</td>
<td>800679</td>
<td>(2018)</td>
</tr>
<tr>
<td>RAFF</td>
<td>TGK1</td>
<td>847299</td>
<td>(2019)</td>
</tr>
<tr>
<td>REBECCA</td>
<td>TGK2</td>
<td>101034024</td>
<td>(2021)</td>
</tr>
<tr>
<td>RECOVERY</td>
<td>TGK1</td>
<td>847205</td>
<td>(2019)</td>
</tr>
<tr>
<td>RECPP</td>
<td>TGK1</td>
<td>899512</td>
<td>(2020)</td>
</tr>
<tr>
<td>ReduHeatLoss</td>
<td>TGA2</td>
<td>899290</td>
<td>(2020)</td>
</tr>
<tr>
<td>REUSSteel</td>
<td>TGA5</td>
<td>839227</td>
<td>(2019)</td>
</tr>
<tr>
<td>Rihanne</td>
<td>TGA1</td>
<td>847332</td>
<td>(2019)</td>
</tr>
<tr>
<td>Robolninspect</td>
<td>TGA5</td>
<td>899252</td>
<td>(2020)</td>
</tr>
<tr>
<td>ROCCS</td>
<td>TGK1</td>
<td>899336</td>
<td>(2020)</td>
</tr>
<tr>
<td>RollProf</td>
<td>TGA2</td>
<td>882678</td>
<td>(2020)</td>
</tr>
<tr>
<td>SafeDewPoint</td>
<td>TGA1</td>
<td>847293</td>
<td>(2019)</td>
</tr>
<tr>
<td>SCHEDULE</td>
<td>TGA4</td>
<td>800732</td>
<td>(2018)</td>
</tr>
<tr>
<td>SinByOSe</td>
<td>TGA1</td>
<td>847319</td>
<td>(2019)</td>
</tr>
<tr>
<td>Slagreus</td>
<td>TGA1</td>
<td>847260</td>
<td>(2019)</td>
</tr>
<tr>
<td>SMARTER</td>
<td>TGA5</td>
<td>101034060</td>
<td>(2021)</td>
</tr>
<tr>
<td>SmartLadle</td>
<td>TGA5</td>
<td>101034017</td>
<td>(2021)</td>
</tr>
<tr>
<td>SPARERIB</td>
<td>TGA1</td>
<td>800771</td>
<td>(2018)</td>
</tr>
<tr>
<td>STEEL S4 EV</td>
<td>TGA4</td>
<td>800726</td>
<td>(2018)</td>
</tr>
<tr>
<td>STEELAR</td>
<td>TGA5</td>
<td>101033790</td>
<td>(2021)</td>
</tr>
<tr>
<td>STeELS-EM</td>
<td>TGA3</td>
<td>101034063</td>
<td>(2021)</td>
</tr>
<tr>
<td>Stir4Steel</td>
<td>TGA4</td>
<td>101034068</td>
<td>(2021)</td>
</tr>
<tr>
<td>SUMAD</td>
<td>TGK1</td>
<td>847227</td>
<td>(2019)</td>
</tr>
<tr>
<td>TACOS</td>
<td>TGA1</td>
<td>847322</td>
<td>(2019)</td>
</tr>
<tr>
<td>TEXMIN</td>
<td>TGK1</td>
<td>847250</td>
<td>(2019)</td>
</tr>
<tr>
<td>TOPGEAR</td>
<td>TGA4</td>
<td>101033989</td>
<td>(2021)</td>
</tr>
<tr>
<td>ToughSteel</td>
<td>TGA4</td>
<td>101034036</td>
<td>(2021)</td>
</tr>
<tr>
<td>TRIM4Post-Mining</td>
<td>TGK1</td>
<td>899278</td>
<td>(2020)</td>
</tr>
<tr>
<td>UCGWATERplus</td>
<td>TGK2</td>
<td>101033964</td>
<td>(2021)</td>
</tr>
<tr>
<td>VALCRA</td>
<td>TGA2</td>
<td>847194</td>
<td>(2019)</td>
</tr>
<tr>
<td>VForm-xSteels</td>
<td>TGA3</td>
<td>888153</td>
<td>(2020)</td>
</tr>
<tr>
<td>WARMILITY</td>
<td>TGA4</td>
<td>800649</td>
<td>(2018)</td>
</tr>
<tr>
<td>WHAM</td>
<td>TGA1</td>
<td>800654</td>
<td>(2018)</td>
</tr>
<tr>
<td>WINDUCTION</td>
<td>TGA4</td>
<td>101034069</td>
<td>(2021)</td>
</tr>
<tr>
<td>WISEST</td>
<td>TGA5</td>
<td>793505</td>
<td>(2018)</td>
</tr>
<tr>
<td>Project Number</td>
<td>Technical Group</td>
<td>Project Acronym</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>------</td>
</tr>
<tr>
<td>101033790 (2021)</td>
<td>TGA5</td>
<td>STEELAR</td>
<td>133</td>
</tr>
<tr>
<td>101033964 (2021)</td>
<td>TGK2</td>
<td>UCGWATERplus</td>
<td>39</td>
</tr>
<tr>
<td>101033984 (2021)</td>
<td>TGA4</td>
<td>InCSEB</td>
<td>111</td>
</tr>
<tr>
<td>101033989 (2021)</td>
<td>TGA4</td>
<td>TOPGEAR</td>
<td>112</td>
</tr>
<tr>
<td>101033991 (2021)</td>
<td>TGA2</td>
<td>HatFlat</td>
<td>69</td>
</tr>
<tr>
<td>101034000 (2021)</td>
<td>TGK2</td>
<td>BackCap</td>
<td>37</td>
</tr>
<tr>
<td>101034012 (2021)</td>
<td>TGA3</td>
<td>AUSTROM</td>
<td>94</td>
</tr>
<tr>
<td>101034015 (2021)</td>
<td>TGA4</td>
<td>DREAMERS</td>
<td>113</td>
</tr>
<tr>
<td>101034017 (2021)</td>
<td>TGA5</td>
<td>SmartLadle</td>
<td>134</td>
</tr>
<tr>
<td>101034022 (2021)</td>
<td>TGK2</td>
<td>ATLANTIS</td>
<td>38</td>
</tr>
<tr>
<td>101034024 (2021)</td>
<td>TGK2</td>
<td>REBECCA</td>
<td>35</td>
</tr>
<tr>
<td>101034035 (2021)</td>
<td>TGK2</td>
<td>GreenDEALCO2</td>
<td>36</td>
</tr>
<tr>
<td>101034036 (2021)</td>
<td>TGA4</td>
<td>ToughSteel</td>
<td>114</td>
</tr>
<tr>
<td>101034037 (2021)</td>
<td>TGA5</td>
<td>DeepQuality</td>
<td>135</td>
</tr>
<tr>
<td>101034038 (2021)</td>
<td>TGA4</td>
<td>LASTTS</td>
<td>115</td>
</tr>
<tr>
<td>101034039 (2021)</td>
<td>TGA3</td>
<td>OPTIDAMATOL</td>
<td>91</td>
</tr>
<tr>
<td>101034041 (2021)</td>
<td>TGA3</td>
<td>AthHyCor</td>
<td>92</td>
</tr>
<tr>
<td>101034042 (2021)</td>
<td>TGK1</td>
<td>POTENTIALS</td>
<td>15</td>
</tr>
<tr>
<td>101034060 (2021)</td>
<td>TGA5</td>
<td>SMARTER</td>
<td>136</td>
</tr>
<tr>
<td>101034063 (2021)</td>
<td>TGA3</td>
<td>STeELS-EM</td>
<td>93</td>
</tr>
<tr>
<td>101034068 (2021)</td>
<td>TGA4</td>
<td>Stir4Steel</td>
<td>110</td>
</tr>
<tr>
<td>101034069 (2021)</td>
<td>TGA4</td>
<td>WINDUCTION</td>
<td>109</td>
</tr>
<tr>
<td>101034072 (2021)</td>
<td>TGA1</td>
<td>IndiWater</td>
<td>49</td>
</tr>
<tr>
<td>101034081 (2021)</td>
<td>TGA1</td>
<td>DevH2forEAF</td>
<td>50</td>
</tr>
<tr>
<td>101034083 (2021)</td>
<td>TGA4</td>
<td>FISHWALL</td>
<td>116</td>
</tr>
<tr>
<td>788552 (2018)</td>
<td>TGA5</td>
<td>QUALITY4.0</td>
<td>148</td>
</tr>
<tr>
<td>793505 (2018)</td>
<td>TGA5</td>
<td>WISEST</td>
<td>150</td>
</tr>
<tr>
<td>794369 (2018)</td>
<td>TGK2</td>
<td>COALTECH2051</td>
<td>45</td>
</tr>
<tr>
<td>796585 (2018)</td>
<td>TGK2</td>
<td>LIG2LIQ</td>
<td>42</td>
</tr>
<tr>
<td>799295 (2018)</td>
<td>TGA2</td>
<td>CONSOLCAST</td>
<td>83</td>
</tr>
<tr>
<td>799787 (2018)</td>
<td>TGA4</td>
<td>LIGHTECH</td>
<td>130</td>
</tr>
<tr>
<td>800643 (2018)</td>
<td>TGA1</td>
<td>LOWCARBONFUTURE</td>
<td>63</td>
</tr>
<tr>
<td>800644 (2018)</td>
<td>TGA2</td>
<td>PMAPIA</td>
<td>82</td>
</tr>
<tr>
<td>800649 (2018)</td>
<td>TGA4</td>
<td>WARMLIGHT</td>
<td>129</td>
</tr>
<tr>
<td>800654 (2018)</td>
<td>TGA1</td>
<td>WHAM</td>
<td>65</td>
</tr>
<tr>
<td>800657 (2018)</td>
<td>TGA5</td>
<td>CYBERMAN 4.0</td>
<td>149</td>
</tr>
<tr>
<td>800659 (2018)</td>
<td>TGK2</td>
<td>3UPGRADE</td>
<td>44</td>
</tr>
<tr>
<td>800672 (2018)</td>
<td>TGA2</td>
<td>FLEXGAP</td>
<td>88</td>
</tr>
<tr>
<td>800677 (2018)</td>
<td>TGA5</td>
<td>NewTech4Steel</td>
<td>151</td>
</tr>
<tr>
<td>800679 (2018)</td>
<td>TGA2</td>
<td>RadiFLAT</td>
<td>87</td>
</tr>
<tr>
<td>Code</td>
<td>Division</td>
<td>Name</td>
<td>Year</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>800687</td>
<td>TGA4</td>
<td>DESDEMONA</td>
<td>2018</td>
</tr>
<tr>
<td>800689</td>
<td>TGK1</td>
<td>i2Mon</td>
<td>2018</td>
</tr>
<tr>
<td>800693</td>
<td>TGA3</td>
<td>CRASHTOUGH</td>
<td>2018</td>
</tr>
<tr>
<td>800699</td>
<td>TGA4</td>
<td>DISSIPABLE</td>
<td>2018</td>
</tr>
<tr>
<td>800711</td>
<td>TGK1</td>
<td>PICTO</td>
<td>2018</td>
</tr>
<tr>
<td>800726</td>
<td>TGA4</td>
<td>STEEL S4 EV</td>
<td>2018</td>
</tr>
<tr>
<td>800730</td>
<td>TGA2</td>
<td>FLATBEND</td>
<td>2018</td>
</tr>
<tr>
<td>800732</td>
<td>TGA2</td>
<td>SCHEDULE</td>
<td>2018</td>
</tr>
<tr>
<td>800746</td>
<td>TGA2</td>
<td>FastLoRoll</td>
<td>2018</td>
</tr>
<tr>
<td>800748</td>
<td>TGA2</td>
<td>MASTERINGROLLSII</td>
<td>2018</td>
</tr>
<tr>
<td>800757</td>
<td>TGK1</td>
<td>HYDROCOALPLUS</td>
<td>2018</td>
</tr>
<tr>
<td>800762</td>
<td>TGA1</td>
<td>ECOSLAG</td>
<td>2018</td>
</tr>
<tr>
<td>800763</td>
<td>TGA4</td>
<td>HSSF</td>
<td>2018</td>
</tr>
<tr>
<td>800769</td>
<td>TGA2</td>
<td>HIGHSPEEDGALVANIZING</td>
<td>2018</td>
</tr>
<tr>
<td>800771</td>
<td>TGA1</td>
<td>SPARERIB</td>
<td>2018</td>
</tr>
<tr>
<td>800774</td>
<td>TGK2</td>
<td>MEGAPLUS</td>
<td>2018</td>
</tr>
<tr>
<td>839227</td>
<td>TG5</td>
<td>REUSteel</td>
<td>2019</td>
</tr>
<tr>
<td>839990</td>
<td>TG5</td>
<td>Optimasteel</td>
<td>2019</td>
</tr>
<tr>
<td>847165</td>
<td>TGA3</td>
<td>iNiTiAI</td>
<td>2019</td>
</tr>
<tr>
<td>847194</td>
<td>TGA2</td>
<td>VALCRA</td>
<td>2019</td>
</tr>
<tr>
<td>847195</td>
<td>TGA3</td>
<td>QPINOX</td>
<td>2019</td>
</tr>
<tr>
<td>847202</td>
<td>TGA5</td>
<td>AutoSurveillance</td>
<td>2019</td>
</tr>
<tr>
<td>847203</td>
<td>TG5</td>
<td>DynReAct</td>
<td>2019</td>
</tr>
<tr>
<td>847205</td>
<td>TGK1</td>
<td>RECOVERY</td>
<td>2019</td>
</tr>
<tr>
<td>847213</td>
<td>TGA4</td>
<td>CuttingEdge4.0</td>
<td>2019</td>
</tr>
<tr>
<td>847227</td>
<td>TGK1</td>
<td>SUMAD</td>
<td>2019</td>
</tr>
<tr>
<td>847229</td>
<td>TGA3</td>
<td>BIOFIRE</td>
<td>2019</td>
</tr>
<tr>
<td>847249</td>
<td>TGA5</td>
<td>E-CO-LadleBrick</td>
<td>2019</td>
</tr>
<tr>
<td>847250</td>
<td>TGK1</td>
<td>TEXMIN</td>
<td>2019</td>
</tr>
<tr>
<td>847253</td>
<td>TGK1</td>
<td>BUSDUCT</td>
<td>2019</td>
</tr>
<tr>
<td>847256</td>
<td>TGA1</td>
<td>HydroPick</td>
<td>2019</td>
</tr>
<tr>
<td>847260</td>
<td>TGA1</td>
<td>Slagreus</td>
<td>2019</td>
</tr>
<tr>
<td>847269</td>
<td>TGA2</td>
<td>OPTILOCALHT</td>
<td>2019</td>
</tr>
<tr>
<td>847284</td>
<td>TGA4</td>
<td>FATECO</td>
<td>2019</td>
</tr>
<tr>
<td>847285</td>
<td>TGA1</td>
<td>MinSiDeg</td>
<td>2019</td>
</tr>
<tr>
<td>847293</td>
<td>TGA1</td>
<td>SafeDewPoint</td>
<td>2019</td>
</tr>
<tr>
<td>847296</td>
<td>TG5</td>
<td>OMA</td>
<td>2019</td>
</tr>
<tr>
<td>847299</td>
<td>TGK1</td>
<td>RAFF</td>
<td>2019</td>
</tr>
<tr>
<td>847318</td>
<td>TGA2</td>
<td>CleanEx</td>
<td>2019</td>
</tr>
<tr>
<td>847319</td>
<td>TGA1</td>
<td>SinByOSe</td>
<td>2019</td>
</tr>
<tr>
<td>847322</td>
<td>TGA1</td>
<td>TACOS</td>
<td>2019</td>
</tr>
<tr>
<td>847332</td>
<td>TGA1</td>
<td>Rihanne</td>
<td>2019</td>
</tr>
<tr>
<td>847333</td>
<td>TGK1</td>
<td>ODYSSEUS</td>
<td>2019</td>
</tr>
<tr>
<td>847338</td>
<td>TGK1</td>
<td>DD-MET</td>
<td>2019</td>
</tr>
<tr>
<td>847341</td>
<td>TGA2</td>
<td>CentriClean</td>
<td>2019</td>
</tr>
<tr>
<td>882678</td>
<td>TGA2</td>
<td>RollProf</td>
<td>2020</td>
</tr>
<tr>
<td>Reference</td>
<td>Code</td>
<td>Title</td>
<td>Score</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>888153(2020)</td>
<td>TGA3</td>
<td>VForm-xSteels</td>
<td>96</td>
</tr>
<tr>
<td>898817 (2020)</td>
<td>TGA2</td>
<td>BURWEAR</td>
<td>70</td>
</tr>
<tr>
<td>899164 (2020)</td>
<td>TGA5</td>
<td>iSlag</td>
<td>137</td>
</tr>
<tr>
<td>899192 (2020)</td>
<td>TGK1</td>
<td>PostMinQuake</td>
<td>16</td>
</tr>
<tr>
<td>899208(2020)</td>
<td>TGA5</td>
<td>ControllInSteel</td>
<td>138</td>
</tr>
<tr>
<td>899223 (2020)</td>
<td>TGA1</td>
<td>PlasmaPilot</td>
<td>51</td>
</tr>
<tr>
<td>899248 (2020)</td>
<td>TGA5</td>
<td>InTEGrated</td>
<td>139</td>
</tr>
<tr>
<td>899251(2020)</td>
<td>TGA3</td>
<td>MARTBAIN</td>
<td>95</td>
</tr>
<tr>
<td>899252 (2020)</td>
<td>TGA5</td>
<td>RoboInspect</td>
<td>140</td>
</tr>
<tr>
<td>899263 (2020)</td>
<td>TGA1</td>
<td>BLEMAB</td>
<td>52</td>
</tr>
<tr>
<td>899268 (2020)</td>
<td>TGA3</td>
<td>MiPRE</td>
<td>97</td>
</tr>
<tr>
<td>899278 (2020)</td>
<td>TGK1</td>
<td>TRIM4Post-Mining</td>
<td>17</td>
</tr>
<tr>
<td>899290 (2020)</td>
<td>TGA2</td>
<td>ReduHeatLoss</td>
<td>72</td>
</tr>
<tr>
<td>899299 (2020)</td>
<td>TGA4</td>
<td>FIRST-WIRE</td>
<td>117</td>
</tr>
<tr>
<td>899318 (2020)</td>
<td>TGA1</td>
<td>COACH</td>
<td>53</td>
</tr>
<tr>
<td>899321 (2020)</td>
<td>TGA4</td>
<td>FREEDAM PLUS</td>
<td>118</td>
</tr>
<tr>
<td>899331 (2020)</td>
<td>TGA4</td>
<td>IntellCutProcess</td>
<td>119</td>
</tr>
<tr>
<td>899332 (2020)</td>
<td>TGA3</td>
<td>DELIGHTED</td>
<td>98</td>
</tr>
<tr>
<td>899335 (2020)</td>
<td>TGA3</td>
<td>HYDRO-REAL</td>
<td>99</td>
</tr>
<tr>
<td>899336 (2020)</td>
<td>TGK1</td>
<td>ROCCS</td>
<td>18</td>
</tr>
<tr>
<td>899345 (2020)</td>
<td>TGA5</td>
<td>EnerMIND</td>
<td>141</td>
</tr>
<tr>
<td>899371 (2020)</td>
<td>TGA4</td>
<td>FAILNOMORE</td>
<td>120</td>
</tr>
<tr>
<td>899381 (2020)</td>
<td>TGA4</td>
<td>HYCAD</td>
<td>121</td>
</tr>
<tr>
<td>899391 (2020)</td>
<td>TGA2</td>
<td>AUSSENS</td>
<td>73</td>
</tr>
<tr>
<td>899406(2020)</td>
<td>TGA3</td>
<td>Crystal</td>
<td>100</td>
</tr>
<tr>
<td>899415 (2020)</td>
<td>TGA1</td>
<td>OnlyPlastic</td>
<td>54</td>
</tr>
<tr>
<td>899455 (2020)</td>
<td>TGA2</td>
<td>PROTEUS-RS</td>
<td>74</td>
</tr>
<tr>
<td>899469 (2020)</td>
<td>TGK1</td>
<td>HEET II</td>
<td>19</td>
</tr>
<tr>
<td>899471 (2020)</td>
<td>TGK2</td>
<td>HyCon</td>
<td>40</td>
</tr>
<tr>
<td>899482 (2020)</td>
<td>TGA3</td>
<td>Dynastab</td>
<td>101</td>
</tr>
<tr>
<td>899512 (2020)</td>
<td>TGK1</td>
<td>RECIPP</td>
<td>21</td>
</tr>
<tr>
<td>899518 (2020)</td>
<td>TGK1</td>
<td>MINRESCUE</td>
<td>22</td>
</tr>
<tr>
<td>101033790 (2021)</td>
<td>TGA5</td>
<td>STEELAR</td>
<td>133</td>
</tr>
<tr>
<td>101033964 (2021)</td>
<td>TGK2</td>
<td>UCGWATERplus</td>
<td>39</td>
</tr>
</tbody>
</table>
Technical Group Coal 1

Post-mining issues, safe and productive coal mining operations

The scope TGK1 includes:

- Highly efficient, largely automated excavation and mining technologies
- Health and safety in coal mining operations
- Upgrading coal deposits; (enhanced) coal bed methane, underground coal Gasification
- Support technologies and services, transport systems and monitoring & process control systems
- Reduction of the environmental impact of mining
- Post-mining environmental issues and land rehabilitation, including energy projects
- Waste management
Synopsis of RFCS Projects 2018-2021

TGK1 Post-Mining Issues, Safe and Productive Coal Mining Operations

POTENTIALS

Synergistic potentials of end-of-life coal mines and coal-fired power plants, along with closely related neighbouring industries: update and re-adoption of territorial just transition plans

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Accompanying measures</th>
<th>Duration (months)</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 794,075.45</td>
<td>Start Date</td>
<td>01/07/2021</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 794,075.45</td>
<td>End date</td>
<td>30/06/2023</td>
</tr>
</tbody>
</table>

Abstract

POTENTIALS focuses on the unique aspects of coupled end-of-life coal mine sites and coal-fired power plants, along with closely related neighbouring industries, taking advantage of their joint potential to stimulate new economic activities, developing jobs and economic value in Coal Regions in Transition.

POTENTIALS will identify and assess their synergistic opportunities by means of a prospective analysis, enabling to develop business models that rely on renewable energy, contribute to the circular economy or scale energy storage, guaranteeing a sustainable and combined use of assets and resources, and supporting the update and re-adoption of territorial just transition plans.

Coordinator

GLOWNY INSTYTUT GORNICTWA

Country

PL

Scientific person in charge

Dr Alicja KRZEMIEŃ

Partners

VGB POWERTECH EV

DE

Dr Thomas ECK

UNIVERSIDAD DE OVIEDO

ES

Prof Pedro RIESGO

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS

EL

Dr Pavlos TYROLOGOU

HULLERAS DEL NORTE SA

ES

Dr Noel CANTO TOIMIL

TECHNISCHE HOCHSCHULE GEORG AGRICOLA (THGA)

DE

Dr Stefan MOELLERHERM
Synthesis of RFCS Projects 2018-2021

TGK1 Post-Mining Issues, Safe and Productive Coal Mining Operations

899192 PostMinQuake

Induced earthquake and rock mass movements in coal post mining areas: mechanisms, hazard and risk assessment

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 2,722,577.75</td>
<td></td>
<td>Start Date</td>
<td>01/09/2020</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,633,546.65</td>
<td></td>
<td>End date</td>
<td>31/08/2023</td>
</tr>
</tbody>
</table>

Abstract

The management of the post mining regions in Europe is important issue for the safety and economic reasons. The PostMineQuake treats the most important hazard related to unexpected ground motions. They may affect the surface stability, vulnerable structures and critical infrastructures.

The main objective of the proposal is to deepen the knowledge of post-mining seismic events in relation to surface deformations, plans for long term monitoring of post mining lands, shaking-maps of the fluid-induced seismicity of European countries with coal mining legacy, transnational guidelines how to deal with and mitigate a hazard manifesting as seismic tremors in post mining regions.

Coordinator

GLOWNY INSTYTUT GORNICTWA

Country PL
Scientific person in charge Dr Jacek CHODACKI

Partners

- BUREAU DE RECHERCHES GEOLOGIQUES ET MINIERES
 Country FR
 Scientific person in charge Mr Pascal DOMINIQUE

- TECHNISCHE HOCHSCHULE GEORG AGRICOLA
 Country DE
 Scientific person in charge Dr Stefan MOELLERHERM

- HELMHOLTZ ZENTRUM POTSDAM DEUTSCHESGEOFORSCHUNGSZENTRUM GFZ
 Country DE
 Scientific person in charge Prof Torsten DAHM

- INSTITUTE OF GEONICS OF THE AS CR, V.V.I.
 Country CZ
 Scientific person in charge Dr Petr KONICEK

- GREEN GAS DPB AS
 Country CZ
 Scientific person in charge Mr Jan SCHREIBER

- DIAMO, STÁTNÍ PODNIK
 Country CZ
 Scientific person in charge Dr Petr JELINEK

- POLITECHNIKA SLASKA
 Country PL
 Scientific person in charge Prof Violetta SOKOLA SZEWIOLA

- INSTITUT NATIONAL DE L ENVIRONNEMENT ET DES RISQUES INERIS
 Country FR
 Scientific person in charge Dr Isabelle CONTRUCCI

- SPOLKA RESTRUKTURYZACJI KOPALN SA
 Country PL
 Scientific person in charge Mr Adrian WINKLER
TRIM4Post-Mining

Transition Information Modelling for transition from coal exploitation to a re-vitalized post-mining land

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 2,377,681.90</td>
<td>Start Date</td>
<td>01/08/2020</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,426,609.14</td>
<td>End date</td>
<td>31/07/2023</td>
</tr>
</tbody>
</table>

Abstract

TRIM4Post-Mining brings together a consortium of European experts from industry and academia to develop an integrated information modelling system. This is designed to support decision making and planning during the transition from coal exploitation to a re-vitalized post-mining landscape enabling infrastructure development for agricultural and industrial utilization and also to contribute to recover energy and materials from coal mining dumps.

The proposed approach allows for efficient and transparent communication of planning options and associated project risks and opportunities between all key stakeholders. It will be founded on a high-resolution spatio-temporal data-base utilizing state-of-the art multi-scale and multi-sensor monitoring technologies that characterize dynamical processes in coal waste dumps related to timely dependent deformation and geochemical processes. It will develop efficient methods for comprehensive spatiotemporal data analytics, feature extraction and predictive modelling that allow for the identification of potential contamination areas and forecasting the waste dump dynamics.

For the interactive exploration of alternative land use planning scenarios in terms of residual risks, technical feasibility, environmental and social impact and also affordability, up-to-date data and models will be embedded in an interactive planning system based on Virtual Reality and Augmented Reality technology forming a TRIM – Transition Information Modelling System.

Coordinator

TECHNISCHE UNIVERSITAET BERGAKADEMIE FREIBERG

Country: DE
Scientific person in charge: Prof Jörg BENNDORF

Partners

TECHNISCHE UNIVERSITEIT DELFT

Country: NL
Scientific person in charge: Dr Mike BUXTON

MITTELEUROPAISCHE BRAUNKOHLENGESELLSCHAFT MBH

Country: DE
Scientific person in charge: Mr Oliver LOHSTRÄTER

SPECTRAL INDUSTRIES BV

Country: NL
Scientific person in charge: Dr Ad MAAS

BEAK CONSULTANTS

Country: DE
Scientific person in charge: Andreas KNOBLOCH

DMT-GESELLSCHAFT FUR LEHRE UND BILDUNG MBH

Country: DE
Scientific person in charge: Dr Stefan MOELLERHEM

EUKELKAMP SONICSAMPDRILL BV

Country: NL
Scientific person in charge: Dr Harm NOLTE
ROCCS

Establishing a Research Observatory to unlock European Coal seams for Carbon dioxide Storage

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 2,031,355.80</td>
<td>Start Date</td>
<td>01/09/2020</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,218,813.48</td>
<td>End date</td>
<td>31/08/2023</td>
</tr>
</tbody>
</table>

Abstract

ROCCS will conduct an in-situ test to evaluate the benefits of enlarging the coal-CO₂ contact area to improve rates of CO₂ storage. This is a current need based on the constrained CO₂ injectivity experienced in tests performed to date due to CO₂-induced coal swelling.

A test facility will be established at Experimental Mine Barbara (EMB), Mikołów, Poland. CO₂ injection will be performed using a horizontal well with an in-seam length significantly larger than in past tests and zonal isolation to control the coal-CO₂ contact area. It is hypothesised that past tests have not overcome coal swelling by failing to establish an effective flow connection to the natural fracture network of the coal seams. The coal-CO₂ contact area will be increased in stages to determine a relationship with injectivity and evaluate the role of preferential flow pathways. Environmental monitoring will provide insights into the gas flow regime.

Laboratory tests will use coal samples taken from EMB as well as from a deep coal deposit selected by the ROCCS industrial partner, advancing the state-of-the-art by using intact cores that are significantly larger than those conventionally used, with pressure measurements along the flow axis and a near zero-displacement boundary to represent the in-situ condition.

Numerical modelling will be applied to design the in-situ test and investigate near-field heterogeneity and regional hydromechanical effects. Techno-economic assessment will optimise the use of horizontal wells for CO₂ storage for operation at minimum costs. Findings will be implemented for the selected deep coal deposit through the design and evaluation of a commercial scale CO₂ storage unit using horizontal wells. Project synthesis will determine whether designing for a larger coal-CO₂ contact area is an effective method to improve the rate of CO₂ storage, leading to new best practice guidelines.

Coordinator

CARDIFF UNIVERSITY

Country: UK
Scientific person in charge: Prof. Hywel THOMAS

Mr. Shakil MASUM

Partners

GLOWNY INSTYTUT GORNICTWA

Country: PL
Scientific person in charge: Mr. Kamil STAŃCZYK

HELMHOLTZ ZENTRUM POTSDAM

Country: DE
Scientific person in charge: Dr. Thomas KEMPKA

DEUTSCHESGEOFORSCHUNGSZENTRUM GFZ

POLSKA GRUPA GORNICZA SA

Country: PL
Scientific person in charge: Mr. Bartłomiej BEZAK
HEET II

Innovative high efficiency power system for machines and devices, increasing the level of work safety in underground mining excavations

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 3,087,752.90</td>
<td>Start Date</td>
<td>01/07/2020</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,852,651.74</td>
<td>End date</td>
<td>30/06/2023</td>
</tr>
</tbody>
</table>

Abstract

The aim of the HEET II project is to improve labour standards of miners and energy safety in the mines as well as other industries and public services. Four main issues implemented in the project (single-wire energy transmission, wireless energy transmission, monitoring, management and communication, integrated composite monorail route) definitely provide an innovative solution for a highly efficient and safe electricity transmission system. The newly developed components in the HEET II will improve safety by minimizing electric shock hazard and by increasing reliability of the electricity network especially with regard to the reduction of energy costs and capacity of batteries. HEETII is focused on developing and testing the state-of-the-art systems for powering machines and devices, mainly operating in potentially explosive atmospheres, such as coal mines. The newly developed system will consist of four critical subsystems, which can be used together or independently. The area of application of the proposed solutions is very wide and also includes public transport. Two of the subsystems will concern high-efficiency transmission of electric energy. The energy transmission will be based on single-wire and wireless technologies developed by the consortium members. The purpose of single-wire technology will be to supply energy between a power supply and distribution points, reducing the number of cables and especially the wires in cables, taking into account the reduction of their cross-section. In addition, by using single-wire technology, the risk of electric shock to employees will be minimized. The purpose of wireless electricity transmission technology will be to continuously recharge mobile batteries in transportation devices moving on a route, like suspended rail. The technology developed in this project will therefore extend the working time of such devices, which is currently limited by the energy stored in the battery in a single charge. The technology will also enhance safety significantly by eliminating the need to route cables and disassemble and recharge the batteries, as is the current practice. Since the suspended rail will be used as one of the elements of the energy transmission system, it will be another of the subsystems bringing added value in the project. The purpose of the integrated roadway will be to enable wireless transmission of energy to a receiver located in a mobile device (moving on a suspended rail) and to enable on-line monitoring of electrical and environmental parameters responsible for the HEET II system’s safety. The rail will be made of composite materials, which will enable reduction of its mass while maintaining the parameters of mechanical strength. The last subsystem of the HEET II system will be the monitoring and control system of the power supply network. The purpose of this subsystem will be to record online the electrical parameters of the power supply network, data sent from the mobile machine receiver and environmental parameters. The results will be analyzed on-line and sent to processing stations. From the information it obtained, subsystem will manage the distribution of electricity, increasing energy efficiency of the mine network by minimizing interruptions in energy supply. In order to achieve planned result, the HEET II project will develop and implement a new sensor network that will be integrated into the roadway and energy transmission subsystems. Integration of individual subsystems at the test stand will allow conducting tests in experimental mine. Obtaining a positive result from tests in the experimental mine it will allow to carry out the certification process and subsequent implementation of the HEET II system in the hazardous areas, like underground coal mines.

Coordinator

INSTYTUT TECHNIKI GORNICZEJ KOMAG

Country	Scientific person in charge
PL | Dr Krzysztof STANKIEWICZ

Partners
POLITECHNIKA SLASKA
GLOWNY INSTYTUT GORNICTWA
RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
SWE SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA
UNIVERSITATEA DUNAREA DE JOS DIN GALATI
JSW INNOWACJE S.A.

PL
PL
DE
PL
RO
PL

Prof Marcin KASPRZAK
Dr Robert HILDEBRANDT
Mr Amir KIANFAR
Mr Dariusz SZYMCZAK
Prof Marian GAICEANU
Ms Paulina PIĘTA
Synopsis of RFCS Projects 2018-2021

TGK1 Post-Mining Issues, Safe and Productive Coal Mining Operations

<table>
<thead>
<tr>
<th>Project Code</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>899512</td>
<td>RECPP</td>
</tr>
</tbody>
</table>

Re-purposing Coal Power Plants during Energy Transition

Project Details

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Accompanying measures</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>EU Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECPP</td>
<td></td>
<td>24</td>
<td>€ 1,342,072.20</td>
<td>€ 1,342,072.20</td>
</tr>
</tbody>
</table>

Start Date 01/07/2020, **End date** 30/06/2022

Abstract

The proposal is a Study about the status, the mapping and screening of the re-purposing potential of coal power plants (coal regions in transition - countries, type, age etc). Common assets (specific site assets) and common commitments (PPAs, steam supply to nearby industry, mines etc) have to be taken into account.

One main objective in this part is the collection and systematization of data based on a set of preconditions for sustainable use of assets of coal power stations in the process of phasing out for further investigation of the best sustainable approach for re-purposing of their infrastructures. A strategic and essential number of typical power plants should be selected based on that.

Sustainable solutions for infrastructure re-uses are listed up and described, regarding their boundary conditions and with concern to circular economy and sector coupling approach (site specific solutions like energy production with renewables, geothermal energy production, H2 item, thermal energy storage using existing infrastructure, etc) to assess savings for infrastructure (assets, staff, etc) re-use.

At the end the sites specified and clustered should be matched with the available technologies for repurposing of sites. Technology may be suitable for a certain site or number of sites if the criteria like legal issues, technical issues and market perspectives are fulfilled.

Coordinator and Partners

Coordinator: VGB POWERTECH EV, Country: DE, Scientific person in charge: Dr Thomas ECK

Partners

- **GLOWNY INSTYTUT GORNICTWA**, Country: PL, Stanisław TOKARSKI
- **ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS**, Country: GR, Dr Nikolaos KOUKOUZAS
- **CEZ AS**, Country: CZ, Dr Petr KREJCI
- **LAUSITZ ENERGIE KRAFTWERKE AG**, Country: DE, Mr Günter HEIMANN
- **POLISH POWER PLANTS ASSOCIATION**, Country: PL, Mr Michał JABLONSKI
- **TAURON WYTWARZANIE SPOLKA AKCYJNA**, Country: PL, Janusz TCHORZ
- **VERBUND THERMAL POWER GMBH & CO KG**, Country: AT, Mrs Dorit BARNSTEDT
- **RWE POWER AG**, Country: DE, Dr Karl Josef WOLF
- **UNIPER SE**, Country: DE, Dr Arne BAYER
- **RWE GENERATION SE**, Country: DE, Mr Wolfgang POHL
- **ELECTRICITE DE FRANCE**, Country: FR, Mr Rainer FRONIUS
- **MONTANUNIVERSITAET LEOBEN**, Country: AT, Prof Thomas KIENGERGER

21
<table>
<thead>
<tr>
<th>MINRESCUE</th>
<th>From Mining Waste to Valuable Resource: New Concepts for a Circular Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info</td>
<td>Type of Project</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 3,185,067.25</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,892,815.35</td>
</tr>
</tbody>
</table>

Abstract

MINRESCUE aims to address one of the major challenges of coal mining industry in Europe: developing innovative concepts for managing, recycling and upcycling waste geomaterials generated by coal mining activities across Europe. The problem of Coal Mining Waste Geomaterials (CMWGs) is particularly important as the volume of disposed waste is enormous. The core objective of the project is to develop and validate a strategy to upgrade CMWGs as constituents in sustainable construction materials and products. Hence, with significant money saving and environmental footprint reduction, MINRESCUE will significantly contribute to the establishment of a circular economy in coal mining areas.

Coordinator

THE UNIVERSITY OF WARWICK

Country: UK
Scientific person in charge: Dr Mohammad REZANIA

Partners

THE UNIVERSITY OF EXETER

Country: UK
Scientific person in charge: Dr Rich CRANE

GLOWNY INSTYTUT GORNICTWA

Country: PL
Scientific person in charge: Mr Aleksander WRANA

SUBTERRA INGENIERIA SL

Country: ES
Scientific person in charge: Mr David DE PAZ

DTEK ENERGY LIMITED LIABILITY COMPANY

Country: UA
Scientific person in charge: Mr Aleksey ZHUHOKOVSKIY

LUBELSKI WEGIEL BOGDANKA SA

Country: PL
Scientific person in charge: Dr Łukasz HERZY

UNIVERSITE DE CERGY-PONTOISE

Country: FR
Scientific person in charge: Prof Elhem GHORBEL

POLSKA GRUPA GORNICZA SA

Country: PL
Scientific person in charge: Bartlomiej BEZAK

BUREAU DE RECHERCHES GEOLOGIQUES ET MINIERES

Country: FR
Scientific person in charge: Dr Stephanie MULLER

POLITECNICO DI MILANO

Country: IT
Scientific person in charge: Prof Liberato FERRARA

NUOVA TESI SYSTEM SRL

Country: IT
Scientific person in charge: Mr Federico MARCHETTI

POLTEGOR INSTYTUT INSYTUT GORNICTWA ODKRYWKOWEGO-POLTEGOR INSTITUTE INST

Country: PL
Scientific person in charge: Dr Adam BAJCAR
Synopsis of RFCS Projects 2018-2021

TGK1 Post-Mining Issues, Safe and Productive Coal Mining Operations

847338 DD-MET

Advanced methane drainage strategy employing underground directional drilling technology for major risk prevention and greenhouse gases emission mitigation

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pilot & Demonstration</td>
<td>54</td>
<td>€ 5,217,586.55</td>
<td>01/07/2019</td>
<td>31/12/2023</td>
</tr>
<tr>
<td></td>
<td>€ 1,440,074.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The primary objective of the proposed project is to demonstrate application of long reach underground directional boreholes drilled above mined coal seams as a novel methane drainage technology in longwall mining of coal. The project aims to demonstrate alternative methane drainage technology (not used in Europe) which will contribute to increased mine safety and productivity, reduction of methane emissions and hazards mitigation costs. The project will be conducted in Poland and in Russia. The implementation of proposed technology will be supported by research (laboratory experiments, numerical modelling and extensive field testing) to assure adjustment to field conditions and technology optimisation. The aim of performing two field pilots in different geological and mining conditions of largest Polish and Russian hard coal basins will provide the opportunity to compare the results of individual tasks and will make this technology even more credible and universal. Project will develop a cost effective and environmentally friendly technology to perform methane drainage during coal seam exploitation using in-mine directional drilling replacing very expensive methane drainage galleries developed above mining coal panels, as well as other auxiliary methane drainage methods. The project assumptions will be confirmed in the field and, as a result, best practices will be derived, which will cover technical, technological, environmental and economic aspects, which should be considered in decision making for implementation of proposed drainage technology.

Coordinator

PL

INSTITUT NAFTY I GAZU - PANSTWOWY INSTYTUT BADAWCZY

Dr Grzegorz LEŚNIAK

Partners

- **GLOWNY INSTYTUT GORNICTWA**
 Dr Jacek SKIBA

- **UNIVERSIDAD DE OVIEDO**
 Prof Pedro RIESGO FERNANDEZ

- **POLSKA GRUPA GORNICZA SA**
 Dr Grzegorz PLONKA

- **IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE**
 Prof Durucan SEVKET

- **FEDERAL STATE BUDGETARY INSTITUTION OF SCIENCE INSTITUTE OF COMPREHENSIVE EXPLOITATION OF MINERAL RESOURCES RUSSIAN ACADEMY OF SCIENCES**
 Dr Alex SHLYAPIN
RAFF

RISK ASSESSMENT OF FINAL PITS DURING FLOODING

<table>
<thead>
<tr>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Project</td>
</tr>
<tr>
<td>Duration (months)</td>
</tr>
<tr>
<td>Total Budget</td>
</tr>
<tr>
<td>Start Date</td>
</tr>
<tr>
<td>EU Contribution</td>
</tr>
<tr>
<td>End date</td>
</tr>
</tbody>
</table>

Abstract

The RAFF project aims to research issues related to pit lakes, which is one of the most common uses of post exploitation voids. Up to now, in Europe, there is no precedent for the creation of a pit lake of a brown coal open pit mine of the volume c.a. 1.5 billion cubic meters. There are many examples of flooded smaller final pits and in some of these, during the process of filling with water, serious geotechnical problems have been encountered. It is expected that during reclamation of open pits of volume 1,5 billion m³ the scale of geotechnical problems will be significant and may impede the process of filling the voids with water.

Almost all such artificial lakes are currently (and in the future) dedicated to recreational purposes. To ensure safe utilization of these localities by the public, it is necessary to assess the risk of instability of these areas, and evaluate the long-term monitoring. The main objectives for monitoring the abandoned open-pit mines are: geotechnical stability of the close vicinity and especially the slopes (both under the water level and the final slopes around the lake); the quality of water (chemical composition), not only in the lake itself but also in the close vicinity and all water feeding into the lake.

The main aims of the project are connected with the creation of comprehensive models that can be used for risk assessment purposes. Innovative outcomes of the project will contribute to methodologies and guidelines to improve the safety, security, and environment aspects of flooded open pit mines. The project will carry out in-situ investigation, laboratory tests, and numerical and physical modelling to achieve the objectives.

Thirteen deliverables are planned to be developed within the RAFF project, especially methodologies, numerical models and guidelines.

Coordinator

POLTEGOR INSTYTUT INSTYTUT GORNICTWA ODKRYWKOWEGO - POLTEGOR INSTITUTE INSTITUTE OF OPENCast MINING

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Dr Adam BAJCAR</td>
</tr>
</tbody>
</table>

Partners

- **VYZKUMNY USTAV PRO HNEDE UHLI AS**
<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZ</td>
<td>Prof Petr SVOBODA</td>
</tr>
</tbody>
</table>

- **POLYTECHNIO KRITIS**
<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL</td>
<td>Dr Michael GALETAKIS</td>
</tr>
<tr>
<td>FR</td>
<td>Dr Marwan ALHEIB</td>
</tr>
</tbody>
</table>

- **INSTITUT NATIONAL DE L ENVIRONNEMENT ET DES RISQUES INERIS**
<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL</td>
<td>Dr Nikolaos KOUKOUZAS</td>
</tr>
</tbody>
</table>

- **ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS**
<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>Dr Alec MARSHALL</td>
</tr>
</tbody>
</table>

- **THE UNIVERSITY OF NOTTINGHAM**
<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Ms Katarzyna NIEDBALSKA</td>
</tr>
</tbody>
</table>

- **GLOWNY INSTYTUT GORNICTWA**
<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO</td>
<td>Prof Maria LAZAR</td>
</tr>
</tbody>
</table>

- **UNIVERSITATEA DIN PETROSAI**
<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZ</td>
<td>Mr Jakub LASEK</td>
</tr>
</tbody>
</table>

- **PALIVOVY KOMBINAT USTI, STATNI PODNIK**
<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Mr Slawomir RZEPECKI</td>
</tr>
</tbody>
</table>

- **CTL MACZKI-BÓR S.A.**
<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES</td>
<td>Mr David DE PAZ</td>
</tr>
</tbody>
</table>

- **SOCIETATEA COMPLEXUL ENERGETIC OLTENIA SA**
<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO</td>
<td>Dr Ionut PREDOIU</td>
</tr>
</tbody>
</table>
Synopsis of RFCS Projects 2018-2021

TGK1 Post-Mining Issues, Safe and Productive Coal Mining Operations

<table>
<thead>
<tr>
<th>847253</th>
<th>BUSDUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase of mines efficiency and health protection through the innovative transport system based on BUSDUCT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 1,900,159.90</td>
<td>Start Date</td>
<td>01/06/2019</td>
<td></td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,140,095.94</td>
<td>End date</td>
<td>31/10/2021</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The transport routes in mines are becoming longer in a result of need to reach the coal seams, which are more and more distant from the shaft, thus efficient transport system is very important for the effective functioning of mines. Widely used transport systems based on suspended locomotives, powered by diesel engines, provides a speed up to 2m/s. Furthermore diesel locomotives are onerous due to exhaust gases and heat emission in confined space. Limited speed extends the exposure time of miners to exhaust gases and results in a significant shortening of their effective worktime. Development of innovative mine transportation system based on three-phase busduct, integrated with the suspended monorail track, for powering the suspended locomotives, is the project objective. Possibility of using the busduct system in the coal mining industry in workings of “a”, “b” or “c” degree of methane explosion hazard and in workings of “A” or “B” class of coal dust explosion hazard is the main innovation. Current collectors which contacts with busduct at speed over 4 m/s, has to be isolated from the mine atmosphere. For that purpose inerting of the power collector working zone within the busduct by inert gas is planned, preventing against ingress of explosive atmosphere. Special nitrogen aggregate subassebly of the suspended locomotive, is planned to be developed for this purpose. Operation of the current collectors of the suspended locomotive will be controlled by a series of sensors. It is planned to apply several levels of safety of current collectors operation, eliminating the possibility of explosion ignition. The following factors guarantee stable market demand for the new product: • necessity of using the effective transportation systems in mines, • disadvantages of present systems due to emission of exhaust gases and heat, • advantages of the new transport system, especially health protection, higher transportation speed and lower energy consumption.

Coordinator

INSTYTUT TECHNIKI GORNICZEJ KOMAG

Country PL
Scientific person in charge Dr Andrej DRWIEGA

Partners

BECKER-WARKOP SPZOO

Country PL
Scientific person in charge Mr Krzysztof SZYMICZEK

POLSKA GRUPA GORNICZA SA

Country PL
Scientific person in charge Mr Rafał GĄSIOR

RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN

Country DE
Scientific person in charge Dr Thomas BARTNITZKI

BARTEC VARNOST

Country SI
Scientific person in charge Mr Asic RUDI
Synopsis of RFCS Projects 2018-2021

TGK1 Post-Mining Issues, Safe and Productive Coal Mining Operations

<table>
<thead>
<tr>
<th>847250</th>
<th>TEXMIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info</td>
<td></td>
</tr>
<tr>
<td>Type of Project</td>
<td>Research</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 3,076,469.90</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,845,881.94</td>
</tr>
</tbody>
</table>

Abstract

Whilst extreme weather events that are consequence of climate change has been a well-researched subject for many years, it is only recently that the subject has appeared on the radar of the international mining industry. Some mines have already faced issues relating to increased severe weather events so this issue needs to be addressed. The scenarios of climate change indicate that this types of events will be more frequent and violent.

TEXMIN project will identify and evaluate environmental impacts on operating, closed and abandoned mines caused by short term increases in extreme weather events and long-term climate change. Climate change scenarios will be calculated from regional climate models and climate baseline review. Impacts brought about by increases in precipitation, temperature and sudden changes in atmospheric pressure will be identified and evaluated with respect to mines across Europe. These will focus on issues such as minewater, gas emissions and structural stability. Risks will be assessed, adaptation & monitoring strategies and tool will be proposed and developed to mitigate current and future impacts. Some of the remedial actions proposed for shafts and spoil dumps will be applied and tested in pilot scale.

Coordinator

GLOWNY INSTYTUT GORNICTWA

Country: PL

Scientific person in charge: Ms Malgorzata MARKOWSKA

Partners

THE UNIVERSITY OF EXETER

Country: UK

Scientific person in charge: Pro Patrick FOSTER

POLITECHNIKA SLASKA

Country: PL

Scientific person in charge: Dr Pawel WRONA

SUBTERRA INGENIERIA SL

Country: ES

Scientific person in charge: Mr David DE PAZ

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS

Country: EL

Scientific person in charge: Dr Nikolaos KOUKOUZAS

DMT GMBH & CO. KG

Country: DE

Scientific person in charge: Dr Christoph KLINGER

VYZKUMNY USTAV PRO HNEDE UHLI AS

Country: CZ

Scientific person in charge: Dr Petr SVOBODA

SPOLKA RESTRUKTURYZACJI KOPALN SA

Country: PL

Scientific person in charge: Mr Adrian WINKLER

TAURON WYDOBICIE SPOLKA AKCYJNA

Country: PL

Scientific person in charge: Mr Rafal PRZYSTAŚ
Synopsis of RFCS Projects 2018-2021

TGK1 Post-Mining Issues, Safe and Productive Coal Mining Operations

SUMAD

Sustainable Use of Mining Waste Dumps

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 3,370,664.65</td>
<td>Start Date</td>
<td>01/07/2019</td>
<td></td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 2,022,398.79</td>
<td>End date</td>
<td>30/06/2022</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The SUMAD project unites European experts to investigate the future use of made-ground consisting of coal-mining spoil with a focus on the geotechnical, sustainability, environmental, socio-economic and long-term management challenges. Advanced risk analysis and physical and numerical modelling will be applied to different sustainable rehabilitation schemes with a particular focus on the technical viability for the development of renewable energy infrastructure. Tip operators and developers as well as authoritative bodies involved in the project will provide valuable input to ensure the maximum possible impact. A case-study site will be used as a test-bed for the concepts developed during the project.

Coordinator

THE UNIVERSITY OF NOTTINGHAM

Country

UK

Scientific person in charge

Dr Charles HERON

Partners

- POLTEGOR INSTYTUT INSTYTUT GORNICTWA OKRYWYWOWEGO- POLTEGOR INSTITUTE INSTITUTE OF OPENCAST MINING

 Country

 PL

 Scientific person in charge

 Mrs Barbara ROGOSZ

- VYZKUMNY USTAV PRO HNEDE UHLI AS

 Country

 CZ

 Scientific person in charge

 Dr Petr SVOBODA

- ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS

 Country

 EL

 Scientific person in charge

 Dr Nikolaos KOUKOUZAS

- INSTITUT NATIONAL DE L ENVIRONNEMENT ET DES RISQUES INERIS

 Country

 FR

 Scientific person in charge

 Mr Laurent CAUVIN

- INSTYTUT TECHNIKI GORNICZEJ KOMAG

 Country

 PL

 Scientific person in charge

 Dr Mariusz WOSZCZYŃSKI

- INSTYTUT TECHNIK INNOWACYJNYCH EMAG

 Country

 PL

 Scientific person in charge

 Mrs Andrzej BIALAS

- GLOWNY INSTYTUT GORNICTWA

 Country

 PL

 Scientific person in charge

 Mr Aleksander WRANA

- LUBELSKI WEGIEL BOGDANKA SA

 Country

 PL

 Scientific person in charge

 Dr Łukasz HEREZY

- PUBLIC POWER CORPORATION S.A.

 Country

 EL

 Scientific person in charge

 Dr Christos ROUMPOS
RECOVERY

RECOVERY of degraded and transformed ecosystems in coal mining-affected areas

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Research</td>
<td>48</td>
<td>€ 1,980,327.10</td>
<td>01/07/2019</td>
<td>30/06/2023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>€ 1,188,196.26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

RECOVERY project focuses on land rehabilitation and ecological restoration of coal mining-affected areas, aiming to accelerate the recovery of degraded and transformed ecosystems to a good ecosystem status. It will assess the contribution of these ecosystems to human wellbeing by means of the "ecosystem-services" concept, evaluating the consequences of alternative courses of action in order that their capacity to provide benefits to society will not be diminished.

To achieve these goals, the major aim of the project is to increase the impact of rehabilitation and ecological restoration actions on society and environment, demonstrating the opportunities to improve overall public welfare.

Coordinator

GLOWNY INSTYTUT GORNICTWA

Country PL
Scientific person in charge Dr Alicja KRZEMIEN

Partners

- **UNIVERSIDAD DE OVIEDO**
 Country ES
 Scientific person in charge Prof Pedro RIESGO FERNANDEZ

- **HUMBOLDT-UNIVERSITAET ZU BERLIN**
 Country DE
 Scientific person in charge Prof Katrin SALOMO

- **VYSOKA SKOLA BANSKA - TECHNICKA UNIVERZITA OSTRAVA**
 Country CZ
 Scientific person in charge Prof Barbara STALMACHOVÁ

- **HULLERAS DEL NORTE SA**
 Country ES
 Scientific person in charge Dr Noel CANTO TOIMIL

- **TAURON WYDOBYCIE SPOLKA AKCYJNA**
 Country PL
 Scientific person in charge Dr Robert FRĄCZEK

- **PALIVOVY KOMBINAT USTI, STATNI PODNIK**
 Country CZ
 Scientific person in charge Mrs Eva STOUPOVÁ
Synopsis of RFC3 Projects 2018-2021

TGK1 Post-Mining Issues, Safe and Productive Coal Mining Operations

800711 PICTO
Production Face Environmental Risk Minimisation in Coal and Lignite Mines

<table>
<thead>
<tr>
<th>Info</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Project</td>
<td>Research</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>42</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 2,467,612.10</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/09/2018</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,480,567.26</td>
</tr>
<tr>
<td>End date</td>
<td>28/02/2022</td>
</tr>
</tbody>
</table>

Abstract
The main objective of the PICTO project proposed is to develop an ICT system to eliminate or minimise undesired and unplanned production stoppages due to increased gas emissions at coal faces through the use of integrated production process and environmental monitoring and control systems. The project objective will be achieved through: • Systematic testing and monitoring of underground gas emission and ventilation conditions at faces and numerical modelling to optimise face monitoring and environmental control designs. • Systematic monitoring of gas drainage performance of drainage boreholes and numerical modelling to optimise face and tailgate gas monitoring and environmental control designs • Development of an ICT software tool and demonstration of the control procedures.

Coordinator
INSTYTUT MECHANIKI GOROTWORU - POLSKIEJ AKADEMII NAUK*IMG PAN

Country Scientific person in charge
PL Prof Jerzy KRAWCZYK

Partners
GLOWNY INSTYTUT GORNICTWA
PL Prof Eugeniusz KRAUSE
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
UK Prof Sevket DURUCAN
EICKHOFF BERGBAUTECHNIK GMBH
DE Dr Karl-HEINZ RIESER
PREMOGOVNIK VELENJE DD
SI Dr Janez ROŠER
POLSKA GRUPA GORNICZA SP Z OO
PL Mr Jacek DZIURA
HYDROCOAL PLUS

Development and demonstration of Hydro Borehole Technology to improve the competitiveness of brown coal excavating techniques worldwide and to minimize their environmental impact.

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Pilot & Demonstration</th>
<th>Duration (months)</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 2,455,582.00</td>
<td>Start Date</td>
<td>01/06/2018</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,227,791.00</td>
<td>End date</td>
<td>30/11/2022</td>
</tr>
</tbody>
</table>

Abstract

The primary objective of proposed project is to demonstrate Hydro Borehole Mining Technology and develop prototype, novel hydro-mining tool, which will contribute to the competitiveness of brown coal excavation techniques worldwide and address such environmental hazards during and after mine operation like: storage of waste material from overburden removal, preventing the ground level subsidence, keeping undisturbed the level of potable water resources in the ground. The project aims to: investigate the potential for implementation of hydro borehole brown coal mining technology in the industrial scale, analyze the roof stability using the backfilling, calculate its economics, determine environmental impacts and risks. HydroCOAL Plus project’s objectives drew attention of the largest European brown coal producers like: Polish Energy Group Mining and Conventional Power Generation joint stock company (PGE GiEK), Czech Severočeské doly a.s. (SD), which confirm pertinence and importance for the industry of project aspects. Above partnership guaranties direct dissemination of project results among leading European industrial partners. HBM-technology is considered to be applicable in deposits, which are either sterilised due to environmental concerns, unmined due to mine design limitations and mine closure requirements and what is even more common - in numerous cases, where significant brown coal deposits are covered by previously removed overburden. HBM technology has a number of advantages comparing with conventional open cast mining in such domains like: safety - it practically excludes human from the coal extraction process, minimal environmental impact, small work force, selectivity, low capital and operating costs, universal applicability. Above advantages provide HBM technology highest level of innovative value in coal mining - largest European brown coal producers confirm this.

Coordinator

GLOWNY INSTYTUT GORNICTWA

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Prof Jozef DUBINSKI</td>
</tr>
</tbody>
</table>

Partners

PGE GORNICTWO I ENERGETYKA KONWENCJONALNA SPOLKA AKCYJNA

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Mr Ryszard FRANKOWSKI</td>
</tr>
</tbody>
</table>

POLTETEG INSTYTUT INSTYTUT GORNICTWA ODKRYWKOWEGO-POLTETEG INSTITUTE INSTITUTE OF OPENCAST MINING

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Dr Jacek SZCZEPIŃSKI</td>
</tr>
</tbody>
</table>

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>Prof Carsten DREBENSTEDT</td>
</tr>
</tbody>
</table>
Synopsis of RFCS Projects 2018-2021

TGK1 Post-Mining Issues, Safe and Productive Coal Mining Operations

<table>
<thead>
<tr>
<th>Project Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>800689</td>
<td>12MON Integrated Mining Impact Monitoring</td>
</tr>
</tbody>
</table>

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Total Budget</th>
<th>Duration (months)</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>€ 2,225,344.60</td>
<td>48</td>
<td>01/07/2018</td>
<td>30/06/2022</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,353,206.76</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

12MON joins highly recognized European institutions to develop an integrated monitoring service for identification and assessment of ground and slope movements related to coal mining. The service comprises innovative monitoring tools including terrestrial laser and radar technology as well as space- and airborne remote sensing. To understand the physical movement processes and in order to minimize mining impact, extensive predictive modelling will be directly integrated with the monitoring information. Finally merged into an integrated web-based system the service will substantially improve monitoring quality and costs and deliver the mining industry a key evaluation and decision making instrument.

Coordinator

DMT GMBH & CO. KG

Country | **Scientific person in charge** |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>Dr Karsten ZIMMERMANN</td>
</tr>
</tbody>
</table>

Partners

- EFTAS FERNERKUNDUNG TECHNOLOGIETRANSFER GMBH
 - DE | Dr Andreas MÜTERTHIES
- INSTYTUT MECHANIKI GOROTWORU - POLSKIEJ AKADEMII NAUK*IMG PAN
 - PL | Prof Krzysztof TAJDUS
- TECHNISCHE UNIVERSITEIT DELFT
 - NL | Dr Phil VARDON
- HOSCHULE MAINZ UNIVERSITY OF APPLIED SCIENCES
 - DE | Dr Jörg KLONOWSKI
- TECHNISCHE UNIVERSITAET BERGAKADEMIE FREIBERG
 - DE | Prof Joerg BENNDORF
- LASERDATA GMBH
 - AT | Mr Frederic PETRINI
- LAUSITZ ENERGIE BERGBAU AG
 - DE | Mr Frank HOFFMANN
- AIRBUS DEFENCE AND SPACE GMBH
 - DE | Dr Oliver LANG
- POLSKA GRUPA GORNICZA SA
 - PL | Mr Bartlomiej BEZAK
The scope TGK2 includes:

- Clean and efficient coal technologies
- Zero-emission and high-efficiency power generation
- Coal gasification and conversion
- Integration of the coal chain from mining to the final products (electricity, heat, hydrogen, coke, synfuels)
- Co-combustion of coal with solid waste or biomass
- Reduction of the environmental impact of installations using coal and lignite
- CO2 capture and storage (CCS)
- Other energy and non-energy uses of coal
- Chemical processing of CO2 captured from combustion or gasification processes and used to produce fuels, petrochemicals and plastics (CCU)
101034024 REBECCA

Retrofitting Existing Fluidized Bed Power Plants for Waste-Derived Fuels and CO2 Capture

<table>
<thead>
<tr>
<th>Info</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Project</td>
<td>Research</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>42</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 2,719,003.50</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/07/2021</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,631,402.10</td>
</tr>
<tr>
<td>End date</td>
<td>31/12/2024</td>
</tr>
</tbody>
</table>

Abstract

The goal of this project is to improve the sustainability and rentability of existing coal-fired fluidized bed power plants by means of substitution of coal by waste-derived fuels and integration of CO2 capture technology while maximizing the efficiency, availability, and load flexibility of the power plant. Retrofit concepts of fluidized bed boilers are developed to enable the utilization of waste-derived fuels up to 100%. The boiler efficiency is maximized by applying oxygen carrier aided combustion. Furthermore, retrofit concepts are developed for more than 90% CO2 capture by means of oxy-fuel and chemical looping combustion, as well as for CO2 utilization or storage.

The flexibility of power generation is optimized with respect to ramp-up/down speed, minimum load, and flexible operation of an electrolyzer. The availability of the boiler is maximized by avoiding fouling, corrosion, and erosion of heat exchangers and refractory. Multipollutant emission reduction technologies are used to comply with regulations. The project will demonstrate and assess the developed retrofit concepts in a real environment by tests in a 1 MWth pilot plant and a commercial boiler. The load flexibility and fluidized bed hydrodynamics of the retrofitted power plants will be evaluated by means of dynamic process simulations and CFD simulations, respectively.

Finally, the project will provide an environmental, techno- and socio-economic assessment of the developed concepts, in particular for coal regions in transition. These concepts will enable operators of these CFB boilers to use their existing assets beyond the phase-out of coal. The use of waste as fuel is an economic solution due to its low (or even negative) price and permanent availability. Capture, utilization and/or storage of CO2 will support the goal of many utilities to reduce their carbon footprint. Flexible operation of these boilers can be used by power utilities to stabilize the electrical grid.

Coordinator

TECHNISCHE UNIVERSITAT DARMSTADT

Country	**Scientific person in charge**
DE | Dr Jochen STRÖHLE

Partners

SUMITOMO SHI FW ENERGIA OY

FI | Dr Vesna BARISIC

FORTUM POWER AND HEAT POLSKA SP. Z O.O.

PL | Mr Marcin BARTOSZ

RWE POWER AKTIENGESELLSCHAFT

DE | Dr Jens HANNES

IMPROBED AB

SE | Dr Fredrik MIND

RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA

IT | Dr Daniela OLEVANO

RINA CONSULTING SPA

IT | Dr Stefano BARBERIS

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS

EL | Dr Nikos NIKOLOPOULOS
Synopsis of RFCS Projects 2018-2021

TGK2 Environmental, Technical and Economic Issues related to Coal Treatment and Use

<table>
<thead>
<tr>
<th>101034035</th>
<th>GreenDEALCO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info</td>
<td>Green Deployment of E-fuels and Liquids based on CO2 for closed and end-of-life coal-related assets</td>
</tr>
<tr>
<td>Type of Project</td>
<td>Research</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>36</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 2,559,809.70</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/08/2021</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,535,885.82</td>
</tr>
<tr>
<td>End date</td>
<td>31/07/2024</td>
</tr>
</tbody>
</table>

Abstract

The GreenDEALCO2 project addresses the coal annual priority 2020 related to the re-purposing of closed or end-of-life coal-related assets and re-orienting existing assets for a sustainable solution. The project aims to promote investments into E-fuels by a cost- and energy-efficient integration of power-to-fuel processes into retrofitted and closed coal power plant sites. GreenDEALCO2 also considers sector coupling to use the stranded assets and suggests novel retrofitting scenarios for end-of-life power plants to boost alternative energy carriers and the Bio-CCU concept. The main project objective is to determine optimized pathways to produce sustainable E-fuels, where the CAPEX and OPEX costs are considerably reduced by using stranded assets of closed coal power plants and process integration at retrofitted end-of-life plants. The project investigates the full supply chain of E-fuel including case study definition based on boundary conditions of selected plants, process simulation and optimization, techno-economic evaluation and sustainability analysis. The project also analyses regulatory framework conditions and perform a pilot certification for the emerging E-fuels with the ultimate goal of early market integration. The GreenDEALCO2 project performs a retrofittability study for end-of-life coal power plants to biomass, alternative solid fuels and hydrogen. The study will be complemented by experimental combustion investigations on promising alternative energy carriers (NH3, Si and hydrogen). The project outcome is expected to support the coal and energy sectors by introducing new business plans for the coal industry while sustaining more than 200 000 jobs. It opens new prospects for coal regions in transition to contribute to climate-neutral energy production. GreenDEALCO2 has a strong consortium with ten partners including three utilities, three universities, one plant manufacturer, one SME, one E-fuel off-taker and the Association VGB.

Coordinator

UNIVERSITAET STUTTGART

Country: DE
Scientific person in charge: Dr Joerg MAIER

Partners

MITSUBISHI POWER EUROPE GMBH
DE
Dr Florian MÖLLENBRUCK

PUBLIC POWER CORPORATION S.A.
EL
Mr Charalampos PAPAPAVLOU

RWE POWER AKTIENGESellsCHAFT
DE
Mr Ferdinand STEFFEN

MOTOR OIL (HELLAS) DIIISTIRIA KORINTHOU AE
EL
Mrs Maria EMMANOUILIDOU

MEO CARBON SOLUTIONS GMBH
DE
Dr Jan HENKE

NATIONAL TECHNICAL UNIVERSITY OF ATHENS - NTUA
EL
Prof Sotirios KARELLAS

MONTANUNIVERSITAET LEOBEN
AT
Prof Thomas KIENBERGER

VERBUND THERMAL POWER GMBH AND CO KG
AT
Mr Martin HOCHFELLNER

VGB POWERTech EV
DE
Dr Thomas ECK
Synopsis of RFCS Projects 2018-2021

TGK2 Environmental, Technical and Economic Issues related to Coal Treatment and Use

<table>
<thead>
<tr>
<th>Project Code</th>
<th>BackCap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info</td>
<td>CO2 capture from back-up coal power plants using Ca(OH)2</td>
</tr>
<tr>
<td>Type of Project</td>
<td>Research</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>36</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 2,191,280.25</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/07/2021</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,314,768.15</td>
</tr>
<tr>
<td>End date</td>
<td>30/06/2024</td>
</tr>
</tbody>
</table>

Abstract

BackCap develops a new process to capture CO2 from amortized coal-based power plants, retrofitted for back-up power provision in highly renewable electricity networks, while supplying CO2 for storage or use. To address the escalation of CO2 capture cost in such low capacity factor system, BackCap uses in-duct Ca(OH)2 injection for CO2 capture during the brief power production periods. The resulting CaCO3 will be stored and used as a steady source of CO2 and CaO by oxy-fuel calcination. The project will investigate gas-solid reaction rates under relevant conditions, test reactor designs (TRL4) and develop process models techno-economic studies.

Coordinator

AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

Country: ES
Scientific person in charge: Dr Borja ARIAS

Partners

- **UNIVERSITAET STUTTGART**
 Country: DE
 Scientific person in charge: Mr Max SCHMID

- **POLITECNICO DI MILANO**
 Country: IT
 Scientific person in charge: Dr Marco ASTOLFI

- **CARMEUSE RESEARCH AND TECHNOLOGY SA**
 Country: BE
 Scientific person in charge: Mr Olivier BUGHIN

- **HULLERAS DEL NORTE SA**
 Country: ES
 Scientific person in charge: Ms María LORENZO
Synopsis of RFCS Projects 2018-2021

TGK2 Environmental, Technical and Economic Issues related to Coal Treatment and Use

101034022

ATLANTIS

An interdisciplinary feasibility study on hybrid pumped-hydro power storage of excess energy in open-pit coal mines

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Duration (months)</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 2,716,537.55</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,629,922.53</td>
</tr>
<tr>
<td></td>
<td>Start Date</td>
<td>01/09/2021</td>
</tr>
<tr>
<td></td>
<td>End date</td>
<td>31/08/2024</td>
</tr>
</tbody>
</table>

Abstract

Scheduled decommissioning of lignite mining in Europe requires innovative and economic strategies to support coal regions in transition. ATLANTIS will assess the feasibility of transforming open-pit coal mines into hybrid energy storage projects. Hereby, repurposing of open-pit mines for hybrid pumped-hydro power storage (HPHS) of excess energy from the electric grid and renewable sources will contribute to the EU Green Deal, while increasing the economic value, stabilising the regional job market and contributing to EU energy supply security. The main objective of ATLANTIS is the elaboration of a technical and economic feasibility study on HPHS in open-pit coal mines.

Coordinator

HELMHOLTZ ZENTRUM POTSDAM
DEUTSCHES GEOFORSCHUNGSZENTRUM GFZ

Country	Scientific person in charge
DE | Dr Thomas KEMPKA

Partners

GLOWNY INSTYTUT GORNICTWA

Country	Scientific person in charge
PL | Dr Krzysztof KAPUSTA

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS GREECE

Country	Scientific person in charge
DE | Prof Emmanouil KARAKAS

PGE GORNICTWO I ENERGETYKA

Country	Scientific person in charge
PL | Mr Dariusz NAJGEBAUER

TECHNISCHE UNIVERSITAT BERLIN

Country	Scientific person in charge
DE | Prof Tomas FERNANDEZ-STEEGER
Synposis of RFCS Projects 2018-2021

TGK2 Environmental, Technical and Economic Issues related to Coal Treatment and Use

101033964 UCGWATERplus

Coal- and bio-based water remediation strategies for underground coal gasification and beyond

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 2,396,819.00</td>
<td>Start Date</td>
<td>01/09/2021</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,438,091.40</td>
<td>End date</td>
<td>31/08/2024</td>
</tr>
</tbody>
</table>

Abstract

UCGWATERplus aims at remediating waters polluted with organic and inorganic contaminants as a result of the operation of underground coal gasification (UCG) plants. Three remediation strategies are contemplated: (1) (electro)coagulation, (2) the use of polymer- and carbon-based adsorbents derived from coal by-products and residues, thus contributing to revalorization of the latter as a positive side-effect of the action, and (3) bioremediation based on constructed wetlands. Combinations of these methods are explored for maximum decontamination efficiency, while also analyzing their technical and economic feasibility. The utility of the developed materials and decontamination strategies beyond UCG water remediation is addressed as well.

Coordinator

AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

ES Dr Juan Ignacio PAREDAS NACHÓN

Partners

GLOWNY INSTYTUT GORNICTWA

PL Prof Krzysztof STANCZYK

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS

FR Dr Vanessa FIERRO

INSTYTUT CHEMICZNEJ PRZEROBKI WELGA

PL Dr Anna KWIECINSKA-MYDLAK

INSTYTUT EKOLOGII TERENOW UPRZEMYSLOWIONYCH

PL Dr Gracyna PLAZA

BILBAINA DE ALQUITRANES SOCIEDAD ANONIMA

ES Dr Enrique ESPARZA

POLSKA GRUPA GORNICZA SA

PL Dr Bartłomiej BEZAK
HyCon

Catalytic Direct Hydrothermal Conversion of Biomass and Lignites to Liquid Fuels and Value-added Chemicals

<table>
<thead>
<tr>
<th>Info</th>
<th>899471</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Project</td>
<td>Research</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>36</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 3,038,034.30</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/09/2020</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,822,820.58</td>
</tr>
<tr>
<td>End date</td>
<td>31/08/2023</td>
</tr>
</tbody>
</table>

Abstract

An innovative approach to coal to liquids conversion based on hydrothermal liquefaction (HTL) of biomass feedstocks and high-moisture European lignites is proposed. Building on earlier experiences in HTL, two key properties of water under hydrothermal conditions, water as a reagent donating hydrogen and as a solvent for coal, will be used to produce liquid fuels and value-added chemicals. An intensive experimental programme of batch and continuous catalytic HTL under inert and reactive atmospheres and liquid product upgrading will be carried out to advance technology readiness from the current level of 2 to 5, through independent validation of the process stages and conceptual integration.

Coordinator

GLOWNY INSTYTUT GORNICTWA
PL
Prof Krzysztof STAŃCZYK

Partners

- **IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE**
UK
Dr Marcos MILLAN
- **TECHNISCHE UNIVERSITAET BERGAKADEMIE FREIBERG**
DE
Mr Kevin GÜNTHER
- **CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS**
FR
Dr Christophe GEANTET
- **CENTRO DE INVESTIGACIONES ENERGETICAS, MEDIOAMBIENTALES Y TECNOLOGICAS-CIEM**
ES
Dr Jose Maria SANCHEZ HERVAS
- **UNIVERSITE LYON 1 CLAUDE BERNARD**
FR
Prof Mélaç TAYAKOUT
- **PGE GORNICTWO I ENERGETYKA KONWENCJONALNA SPOLKA AKCYJNA**
PL
Mr JerzySAWICKI
- **ELLINIKA PETRELAIA AE**
GR
Dr Spyros KIARTZIS
ODYSSEUS

Coal-to-liquids supply chain integration in view of operational, economic and environmental risk assessments under unfavourable geological settings

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 3,307,453.85</td>
<td>Start Date</td>
<td>01/06/2019</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,964,060.31</td>
<td>End date</td>
<td>31/05/2022</td>
</tr>
</tbody>
</table>

Abstract

ODYSSEUS aims at Coal-to-Liquids Supply Chain (CLSC) integration and enhanced assessment of operational, economic and environmental risks during or after mine operation in unfavourable geological settings for potential high coal production areas in European medium- to low-grade coal deposits. For that purpose, technological CLSC integration and optimisation are the main project tasks, supported by experimental activities on upgrading coal-derived liquids and by-product beneficiation, integration of conventional and innovative mine development as well as enhanced techno-economic and environmental risk management. Best-practices guidelines and workshops will support decision makers and stakeholders in increasing EU-wide resources utilization and employment, while reducing import dependency.

Coordinator

HELMHOLTZ ZENTRUM POTSDAM
DEUTSCHESGEOFORSCHUNGSZENTRUM GFZ

Country	Scientific person in charge
DE | Dr Thomas KEMPKA

Partners

TECHNISCHE UNIVERSITAET BERGAKADEMIE FREIBERG
GLOWNY INSTYTUT GORNICTWA
UNIVERSITY OF NEWCASTLE UPON TYNE
CALAMITES LTD.
DMT GMBH & CO. KG
PUBLIC POWER CORPORATION S.A.
PECSI TUDOMANYEGYETEM - UNIVERSITY OF PECŞ
ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS

Country	Scientific person in charge
DE | Prof Dr.-Ing Berndt MEYER
PL | Dr Krzysztof KAPUSTA
UK | Dr Vasilis SARHOSIS
HU | Dr István KALMÁR
DE | Dr Torsten GORKA
EL | Dr Christos ROUMPOS
HU | Dr Maria HAMOR-VIDO
EL | Dr Nikolaos KOUKOUZAS
Synopsis of RFCS Projects 2018-2021

TGK2 Environmental, Technical and Economic Issues related to Coal Treatment and Use

<table>
<thead>
<tr>
<th>Project Code</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>800774</td>
<td>MEGAPlus</td>
</tr>
</tbody>
</table>

Unconventional MEthane Production from Deep European Coal Seams through combined Coal Bed Methane (CBM) and Underground Coal Gasification (UCG) technologies

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>EU Contribution</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>36</td>
<td>€ 2,899,261.70</td>
<td>01/06/2018</td>
<td>€ 1,739,556.42</td>
<td>31/05/2021</td>
</tr>
</tbody>
</table>

Abstract

MEGA+ aims at evaluation of the use of deep lying methane rich coal deposits for coalbed methane and enhanced coalbed methane recovery using horizontal wells, coupled with subsequent high pressure SNG-oriented UCG through the reuse of the same horizontal wells and permanent storage of CO2. Since, the project takes a radical and holistic approach to coupled CBM-UCG process, beyond state-of-the-art, high-pressure gasification tests, advanced numerical simulations and techno-economic assessments will be developed and employed to investigate site-specific CBM-UCG implementations. Project findings will be compiled in best practices serving as guideline for deep CBM-UCG operations in Europe and world-wide.

Coordinator

GLOWNY INSTYTUT GORNICTWA

Country | **Scientific person in charge**
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Dr Krzysztof KAPUSTA</td>
</tr>
</tbody>
</table>

Partners

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE

CARDIFF UNIVERSITY

HELMHOLTZ ZENTRUM POTSDAM DEUTSCHESGEOFORSCHUNGSZENTRUM GFZ

USTAV CHEMICKYCH PROCESU AV CR, V. V. I.

INSTITUT NATIONAL DE L ENVIRONNEMENT ET DES RISQUES INERIS

TATA STEEL UK LIMITED

POLSKA GRUPA GORNICZA SA

Country | **Scientific person in charge**
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>Prof Sevket DURUCAN</td>
</tr>
<tr>
<td>UK</td>
<td>Prof Hywel THOMAS</td>
</tr>
<tr>
<td>DE</td>
<td>Dr Thomas KEMPKA</td>
</tr>
<tr>
<td>CZ</td>
<td>Dr Olga SOLCOVA</td>
</tr>
<tr>
<td>FR</td>
<td>Dr Stephane LAFORTUNE</td>
</tr>
<tr>
<td>UK</td>
<td>Dr Chris WILLIAMS</td>
</tr>
<tr>
<td>PL</td>
<td>Mr Bartłomiej BEZAK</td>
</tr>
</tbody>
</table>
Synopsis of RFCS Projects 2018-2021

TGK2 Environmental, Technical and Economic Issues related to Coal Treatment and Use

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>800659</td>
<td>I3UPGRADE</td>
<td>Integrated and intelligent upgrade of carbon sources through hydrogen addition for the steel industry</td>
</tr>
</tbody>
</table>

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>48</td>
<td>€ 3,322,836.35</td>
<td>01/06/2018</td>
<td>31/05/2022</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,991,844.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

I3upgrade aims at the intelligent and integrated upgrade of carbonaceous by-products in coal conversion industries through hydrogen intensified synthesis processes.

In contrast to established synthesis technologies, the consortium will develop direct methanation and methanol synthesis of coal-based by-product gases in integrated steel works (blast furnace gas, converter gas, coke oven gas) under dynamic and transient conditions. The proposed concept adds hydrogen from an electrolyzer to these CO2/CO rich gases to adjust stoichiometry and to convert them into intermediate fuels. This reduces the overall coal-based CO2 emissions of the steel work and opens ideal opportunities for balancing the electrical grid. Advanced process control and operational strategies on component-, site- and system level will minimize operational costs and evaluate the thermodynamic and economic performance of the proposed concepts for different market scenarios.

In part A of the proposal, the partners target the development and evaluation of technical key innovations: new reactor concepts for the methanation and methanol synthesis will be characterized for real steel gases under dynamic operation conditions. Part B focuses on the integration and flexible operation of the syntheses within the complete steel production chain based on advanced control concepts. The final proof-of-concept demonstrates the new control strategies and reactor concepts with real bottled steel mill gases as well as with complex gas matrix from an existing coal gasifier, based on transient data from the steel work in Linz, Austria. Agent based modelling of the complete process chain will evaluate the opportunities for reduction of coal-based CO2 emissions in steel works and the benefits to the electric grid in the framework of new emerging volatile markets. The interdisciplinary consortium will elaborate business cases for European steel producers by integrating coal-based steel and synthetic fuel industries.

Coordinator

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>Prof Juergen KARL</td>
</tr>
</tbody>
</table>

Partners

<table>
<thead>
<tr>
<th>Country</th>
<th>Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Dr Leokadia ROG</td>
</tr>
<tr>
<td>AT</td>
<td>Mr Thomas BUERGLER</td>
</tr>
<tr>
<td>AT</td>
<td>Dr Johannes RIEGER</td>
</tr>
<tr>
<td>IT</td>
<td>Prof Markus LEHNER</td>
</tr>
<tr>
<td>IT</td>
<td>Dr Valentina COLLÀ</td>
</tr>
<tr>
<td>EL</td>
<td>Dr Kyriakos PAPOPOULOS</td>
</tr>
<tr>
<td>DE</td>
<td>Dr Holger SCHLICHTING</td>
</tr>
</tbody>
</table>
Synopsis of RFCS Projects 2018-2021

TGK2 Environmental, Technical and Economic Issues related to Coal Treatment and Use

<table>
<thead>
<tr>
<th>796585</th>
<th>LIG2LIQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info</td>
<td>Cost Effective Conversion of Lignite and Waste to Liquid Fuels</td>
</tr>
<tr>
<td>Type of Project</td>
<td>Research</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>42</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 2,917,063.60</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/08/2018</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,750,238.16</td>
</tr>
<tr>
<td>End Date</td>
<td>31/01/2022</td>
</tr>
</tbody>
</table>

Abstract

The aim of this project is to develop an economically efficient concept for production of valuable substances, such as Fischer-Tropsch-fuels or methanol, from lignite and a variety of wastes including plastics and bio-wastes by means of the High Temperature Winkler (HTW) gasification technology. The costs for syngas cleaning are significantly reduced by an innovative acid gas removal stage for the subsequent synthesis step. The work programme starts with lab scale investigations regarding a) the feedstock properties relevant for fluidized bed gasification and b) the development of the acid gas removal stage. Then, the full process chain is tested at real conditions in a pilot plant with a size of 0.5 MWth feedstock input. The process is scaled up to industrial size using adequate models that have been validated at pilot scale. Finally, a techno-economic assessment and life cycle analysis is performed. The results of this project will be used by the project partners to evaluate the economics of the concept and to assess the feasibility of a future demonstration plant.

Coordinator

Country

TECHNISCHE UNIVERSITAT DARMSTADT

DE

Dr Jochen STRÖHLE

Partners

UNIVERSITA DEGLI STUDI DELL'AQUILA

IT

Dr Katia GALLUCCI

UNIVERSITY OF ULSTER

UK

Dr Ye HUANG

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS

EL

Dr Nikolaos NIKOLOPOULOS

INSTYTUT CHEMICZNEJ PRZEROBKI WEGLA

PL

Mr Grzegorz TOMASZEWICZ

RWE POWER AG

DE

Dr Thorsten LIESE

THYSSENKRUPP INDUSTRIAL SOLUTIONS AG

DE

Mr Ralf ABRAHAM
Synopsis of RFCS Projects 2018-2021

TGK2 Environmental, Technical and Economic Issues related to Coal Treatment and Use

<table>
<thead>
<tr>
<th>794369</th>
<th>COALTECH2051</th>
</tr>
</thead>
<tbody>
<tr>
<td>An RFCS Accompanying Measure on European coal research in light of EU policy objectives to 2050 and future global trends in coal use</td>
<td></td>
</tr>
</tbody>
</table>

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Accompanying Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (months)</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Budget</th>
<th>€ 365,659.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Date</td>
<td>01/07/2018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EU Contribution</th>
<th>€ 365,659.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>End date</td>
<td>30/06/2020</td>
</tr>
</tbody>
</table>

Abstract

The “energy transition” gives new challenges, but also new opportunities, for exploiting coal in the EU – with lower CO2 emissions.

This Accompanying Measure proposal responds to current EU policy imperatives. It will promote the knowledge gained from the RFCS Research Programme and share experiences with the international research community.

The aim is to develop, with stakeholders, a strategic research agenda for the Programme that is aligned with the EU’s Energy Union vision for 2050 and to establish a European Network of Clean Coal Technologists that complements the European Commission’s targeted platforms to support the energy transition in the coal regions.

Coordinator

IEA COAL RESEARCH LIMITED

Country	**Scientific person in charge**
UK | Dr Andrew MINCHENER

Partners

- **ASSOCIATION EUROPEENNE DU CHARBON ET DU LIGNITE**
 BE | Mr Brian RICKETS

- **GLOWNY INSTYTUT GORNICTWA**
 PL | Dr Aleksandra KOTERAS

- **ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS**
 EL | Dr Nikolaos KOUKOUZAS
Technical Group Steel 1
Iron- and Steelmaking

The scope TGA1 includes:

- Ore agglomeration, sintering and pelletising processes
- Physico-chemical metallurgy of liquid steel related to primary/secondary steelmaking and to slag formation
- Optimised sustainable iron- and steelmaking processes and operations (BF, EAF, DRI ...)
- New and improved processes for sustainable iron and steel production (hydrogen, electrolysis...)
- New and improved technologies for scrap classification, preparation and recycling for integration in iron-and steelmaking
- Recovery and valorisation of by-products (solids, liquids, gases)
- Instrumentation, modelling, control and optimisation of iron and steelmaking processes
- Reduction of emissions (including CO2), energy consumption and improvement of the environmental impact in iron- and steelmaking processes
- Energy, water and material flow management in iron and steelmaking processes, including recovery of waste heat
- Restoration of steelworks sites
IndiWater

Independent industrial water supply by digitalization, simulation and innovative treatment technologies

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 1,926,678.45</td>
<td>Start Date</td>
<td>01/07/2021</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,154,807.07</td>
<td>End date</td>
<td>31/12/2024</td>
</tr>
</tbody>
</table>

Abstract

Increasing water stress in Central Europe is a challenge for the iron and steel industry. To face it, IndiWater focuses on the prediction and control of operating status of process water circuits and treatment plants under consideration of innovative online measurement techniques. Zero liquid discharge (ZLD) techniques will be introduced to mitigate the water stress. The proposal IndiWater focuses on these approaches in the context of circular economy and the European Green Deal.

Objectives of IndiWater are I.) development of a digital prediction tool and automated water circuits control system, II.) development and application of online NIR measurement, III.) improvement and adaptation of ZLD treatment processes by coupling with the prediction tool and NIR measurement.

The progress of the proposal beyond the state of art is focusing for: Industrial Water 4.0, Prediction tool on basis of SIMBA#, Pre-filtration with new modular ceramic flat membranes and combination of desalting technologies to achieve near ZLD. These innovative approaches and solutions will be tested in two different use cases with complex wastewaters which are typical for the steel industry.

The well-balanced consortia of complementary partners from the steel industry, leading R&D companies for the steel production and specialised companies can achieve the addressed added values. IndiWater will lead to a safer water supply due decoupling from climate change, to a prediction tool on basis of the common SIMBA# software for a reliable wastewater treatment plant operation and to a water recovery by innovative and energy saving technologies. Improvements will be assessed by the creation of an LCA which is linked to the prediction tool.

The experienced partners coordinated by the applied R&D company VDEh-Betriebsforschungsinstitut (BFI) agreed about the IPR Management and included a risk as well as innovation management in the work plan.

Coordinator

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH
Country: DE
Scientific person in charge: Dr Matthias KOZARISZCZUK

Partners

THYSSENKRUPP RASSELSTEIN GMBH
Country: DE
Scientific person in charge: Mrs Susanne KALTER

CERAFILET GERMANY GMBH BLUE FILTRATION
Country: DE
Scientific person in charge: Dr Miriam SARTOR

LUXEMBOURG INSTITUTE OF SCIENCE AND TECHNOLOGY
Country: LU
Scientific person in charge: Mrs Elorri IGOS

INSTITUTO DE SOLDADURA E QUALIDADE
Country: PT
Scientific person in charge: Cristina ASCENÇO

HUETTENWERKE KRUPP MANNESMANN GMBH
Country: DE
Scientific person in charge: Mr Christian PODDIG
Synopsis of RFCS Projects 2018-2021

TGA1 Iron and steelmaking

101034081 DevH2forEAF

Developing and enabling H2 burner utilization to produce liquid steel in EAF

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>42</td>
<td>€ 3,203,343.00</td>
<td>01/07/2021</td>
<td>31/12/2024</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,922,005.80</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The steel production through electric arc furnaces (EAF) plays an increasingly important role in modern steelworks concepts. Today the electric arc furnace steel of the overall steel production in the EU-28 is 41.5 % (69 Mtons/year). With 81 % in Italy and 61% in Spain, the production of EAF steel is significantly higher than steel production via the blast furnace/basic oxygen furnace route (not considering Member States having exclusively EAF steel production). In the modern EAF, the contribution of the chemical energy for the scrap melting and refining is the range of 25-45% of the total energy required. The Natural Gas (NG) burners provide in the range of 40-80 kWh/t of energy. It means that the production of 100 tons of steel requires the combustion of 370-750 Nm3 of NG with CO2 emission of 0.75-1.5 tons. The substitution of just 10% of NG with hydrogen in the whole steel European production will bring a remarkable reduction of CO2 emission up to 0.1Mtons/year. The main objective of the present proposal is to set up a burner fed with hydrogen to replace NG. Addressing this goal, many other aspects will be considered. A comprehensive analysis of H2 hydrogen burners in EAF will permit to achieve the following aims:

- Design and realization of burners, able to work with NG/H2 mixture, up to 100% hydrogen. The burners will be designed and manufactured to work in severe environment, thus ensuring mechanical and thermal resistance in respect of EAF operative conditions.

- Risk analysis for the definition of the correct actions and countermeasures when hydrogen is used in EAF process: safety issues related to storage, transport and injection must be identified and risks minimized.

- Analysis the performance of hydrogen burner in replacement of NG through experimental trials at two industrial sites.

The final results of this project will represent a milestone for the utilization of H2 in steelmaking and the first key step for the decarbonization of the steel industry.

Coordinator

RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA

Country: IT
Scientific person in charge: Mr Eros FARACI

Partners

- RHEINISCH-WESTFAELISCHEN TECHNISCHE HOCHSCHULE AACHEN
 Country: DE
 Scientific person in charge: Dr Thomas ECHTERHOF

- COMPANIA ESPANOLA DE LAMINACION SL
 Country: ES
 Scientific person in charge: Mr Santiago CAPELO

- FERIERE NORD SPA
 Country: IT
 Scientific person in charge: Mr Daniele GASPARDO

- RIVOIRA GAS S.R.L.
 Country: IT
 Scientific person in charge: Mr Giulio RINALDI

- SMS GROUP S.P.A.
 Country: IT
 Scientific person in charge: Dr Jacopo GREGUOLDO

- AFV ACCIAIERIE BELTRAME S.P.A.
 Country: IT
 Scientific person in charge: Mr Marco MEGGIORIN
PlasmaPilot

Flexible Ladle Preheating Procedures using Plasma Heated Refractory

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pilot&Demonstration</td>
<td>42</td>
<td>€ 1,438,727.55</td>
<td>01/07/2020</td>
<td>31/12/2023</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td></td>
<td>€ 719,363.78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Ladle preheating is a requirement for steelmakers to minimize thermal shock and damage to the refractory lining and to reduce temperature drop of the liquid steel in the ladle. Whereas standard heating technology using flammable gases is unfavorable regarding process efficiency, energy consumption and emissions, a novel technique using plasma heating offers a potential breakthrough in developing flexible ladle preheating procedures through individually plasma heated refractory.

A collaborative pilot and demonstration project involving a steel plant and a plasma heater manufacturer, two European universities and a measurement service provider is proposed to investigate the necessities, technical requirements and opportunities of new ladle preheating procedures using plasma by combining engineering work on adaption of plasma heating to ladle preheating station, numerical modelling of ladle preheating processes using plasma and pilot trials at a plasma heater test rig with a full scale steelmaking ladle. This joint effort aims to test thermal energy input and demonstrate ladle preheating using plasma in operational environment. It is accompanied by numerical studies of effective liquid steel temperature loss of subsequent heat, industrial measurement campaigns and laboratory testing of improved refractory lifetime by minimized decarburization. The project work will be completed by an assessment of economic and environmental benefits and transferability directly into steel plant applications, which would lead to future steel plant implementation.

A future implementation would lead to flexible preheating procedures (drying, first preheating and all subsequent preheating) with increased refractory lifetime from minimized decarburization and wear, minimized emissions during preheating and thus improved working environment, and less gas consumption and higher heating rates.

Coordinator

KUNGLIGA TEKNISKA HOEGSKOLAN

Country	*Scientific person in charge*
SE | Prof Björn GLASER

Partners

- **SCANARC PLASMA TECHNOLOGIES AB**
 - *Country*: SE
 - *Scientific person in charge*: Dr Matej IMRIS

- **SIDENOR INVESTIGACION Y DESARROLLOSA**
 - *Country*: ES
 - *Scientific person in charge*: Mr Asier ARTEAGA

- **POLITECNICO DI BARI**
 - *Country*: IT
 - *Scientific person in charge*: Prof Raffaello Pio IAVAGNILIO
Synopsis of RFCS Projects 2018-2021

TGA1 Iron and steelmaking

<table>
<thead>
<tr>
<th>899263</th>
<th>BLEMAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLast furnace stack density Estimation through on-line Muons ABSorption measurements</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 2,083,972.00</td>
<td>Start Date</td>
<td>01/07/2020</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,250,383.20</td>
<td>End date</td>
<td>31/12/2023</td>
</tr>
</tbody>
</table>

Abstract

BLEMAB is the evolution of the previous Mu-Blast project (RFSR-CT-2014-00027).

Building on the successful achievements obtained with the former project, BLEMAB proposal will investigate the imaging capability of the inner zone of blast furnaces, using the muon absorption technique. A new muon detector will be manufactured and then installed at two industrial blast furnace plants. The new detector measurements will be compared with measurements obtained through an enhanced multipoint probe and standard blast furnace models. We expect that the new muon technique will make an essential contribution to the on-line blast furnace process control through the direct detection of the blast furnace cohesive zone.

Coordinator

<table>
<thead>
<tr>
<th>RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA</th>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT</td>
<td>Mr Ugo CHIAROTTI</td>
<td></td>
</tr>
</tbody>
</table>

Partners

- **ISTITUTO NAZIONALE DI FISICA NUCLEARE**
 - Country: IT
 - Scientific person in charge: Dr Lorenzo BONECHI

- **UNIVERSITA DEGLI STUDI DI PADOVA**
 - Country: IT
 - Scientific person in charge: Prof Irene CALLIARI

- **ARCELORMITTAL BREMEN GMBH**
 - Country: DE
 - Scientific person in charge: Dr Andreas FRANZEN

- **KUNGLIGA TEKNISKA HOEGSKOLAN**
 - Country: SE
 - Scientific person in charge: Prof Björn GLASER

- **ARCELORMITTAL MAIZIERES RESEARCH SA**
 - Country: FR
 - Scientific person in charge: Mr Oleksandr NECHYPORUK

- **ACCIAIERIA ARVEDI SPA**
 - Country: IT
 - Scientific person in charge: Dr Nicola PETRONELLI
Synopsis of RFCS Projects 2018-2021

TGA1 Iron and steelmaking

899318
COACH

Cold-bonded agglomerates for blast furnace ironmaking with chemically engineered binders

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Research</td>
<td>42</td>
<td>€ 2,246,723.45</td>
<td>01/07/2020</td>
<td>31/12/2023</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td></td>
<td>€ 1,348,034.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The steelmaking activities in Europe rely heavily on the blast furnace BF process for hot metal production. The steelmakers of the COACH consortium (ArcelorMittal, TATA Steel) presently struggle with the need to recycle internal wastes and the need to reduce the CO2 emissions.

The project aims at demonstrating the use of cold-bonded, cement-free, self-reducing agglomerates in blast furnaces. Cold agglomeration is an alternative to sintering and pelletizing processes; it is more energy efficient and generates less CO2.

The agglomerates will be:

- Cement-free to be used in the many European blast-furnaces that do not tolerate further slag addition;
- Self-reducing to reduce coke consumption;
- Made of by-products to improve internal recycling.

This goal will be met with the use of dedicated organic binders.

The lab scale agglomeration and the extensive testing of agglomerates in blast furnace conditions will be followed by pilot scale production and a blast furnace industrial trial.

Coordinator

CENTRE DE RECHERCHES METALLURGIQUES ASBL
Country: IT
Scientific person in charge: Dr Frédéric BLAFFART

Partners

BASF SE
Country: DE
Scientific person in charge: Dr Adrian VILLANUEVA

ARCELORMITTAL INNOVACION INVESTIGACION E INVERSION SL
Country: ES
Scientific person in charge: Dr Noelia VEGA

TATA STEEL NEDERLAND TECHNOLOGY BV
Country: NL
Scientific person in charge: Dr Yanping XIAO

ARCELORMITTAL MAIZIERES RESEARCH SA
Country: FR
Scientific person in charge: Dr Jose BARROS

TATA STEEL UK LIMITED
Country: UK
Scientific person in charge: Dr Martin CIARAN
Synopsis of RFCS Projects 2018-2021

TGA1 Iron and steelmaking

OnlyPlastic

EAF working with polymers derived from plastic residue in substitution of fossil fuel

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pilot&Demonstration</td>
<td>36</td>
<td>€ 2,056,131.30</td>
<td>01/09/2020</td>
<td>31/08/2023</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,028,065.65</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

ONLYPLASTIC aims to substitute in the Feralpi Lonato EAF all the fossil carbon sources (coal, coke, pet coke), injected and charged as reducing and foaming agent, with densified polymers derived from plastic residue. To reach the optimal use of granulated SRA the following activities are foreseen:

- Realization of prototypes for granulated SRA handling and transportation
- Realization of a charging system for SRA in the buckets,
- Design of a new injection system customized on the granulated SRA obtained in agreement with UNI 10667-17 specifications
- Investigation of the possibility to inject SRA blended/mixed with other materials,
- Operative practices optimization of the process with new materials.

The expected benefits are:

- Natural resources preservation by plastic recycling (circular economy): 100% of coal used in EAF will be substituted
- Reduction of CO2 emission due to:
 - the contribution to iron oxide reduction reaction of the hydrogen contained in the plastic material
 - the reduction of specific electrical consumption (3%)
- Reduction of cost index (lower cost of SRA respect to coal).

Coordinator

RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA

Country: IT
Scientific person in charge: Dr Loredana DI SANTE

Partners

- **TENOVA SPA**
 Country: IT
 Scientific person in charge: Dr Mattia BISSOLI

- **FERALPI SIDERURGICA SPA**
 Country: IT
 Scientific person in charge: Dr Piero FRITTELLA

- **I. BLU SRL**
 Country: IT
 Scientific person in charge: Dr Elia GOSPARINI

- **STRANE INNOVATION SAS**
 Country: FR
 Scientific person in charge: Dr Alexandre BREDIMAS
Rihanne

Reliable Blast Furnace Hearth Management

<table>
<thead>
<tr>
<th>Info</th>
<th></th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Project</td>
<td>Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 3,938,822.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 2,363,293.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Date</td>
<td>01/06/2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End date</td>
<td>30/11/2022</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The “Rihanne” project focuses on a more reliable blast furnace (BF) hearth management in order to improve the productivity, process stability as well as material and energy efficiency. This is enabled by longer periods between the intermediate hearth repairs, prolonged hearth life time, lower need for extra coke to prevent metal break-out and less deviations from the optimal tapping praxis.

Measurements from innovative on-line devices and comprehensive novel models of lining wear, hearth flow, liquid levels and taphole flow will be integrated via Big Data Methodology to yield straight-forward operator guidelines for smooth and reliable BF hearth operation.

The proposed work in Rihanne will be carried out by a consortium of 10 partners from steel making companies, research institutes and universities. This guarantees both the quality of the research and the practical implementation in industry. The research institutes and universities will work in close cooperation with the industrial sites for efficient transfer of data and process knowledge and for implementing the developed tools.

All tasks are divided between the partners in a way to avoid duplication of work, but to benefit from complementary skills and resources. The developed tools will be implemented at one or several blast furnaces. Application of multiple blast furnaces is required for ensuring that the current state-of-art is utilised and that the methods are generally applicable, but also to compare different technologies to determine the best practice.

Coordinator

Country	**Scientific person in charge**
TATA STEEL NEDERLAND TECHNOLOGY BV | NL | Gerard LOUWERSE

Partners

- **VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH** | **Country**: DE | **Scientific person in charge**: Yalcin KAYMAK
- **AKTIEN-GESELLSCHAFT DER DILLINGER HÜTTEWERKE** | **Country**: DE | **Scientific person in charge**: Rongshan LIN
- **ABO AKADEMI** | **Country**: FI | **Scientific person in charge**: Henrik SAXEN
- **RUHR-UNIVERSITAET BOCHUM** | **Country**: DE | **Scientific person in charge**: Siegmar WIRITZ
- **ARCELORMITTAL EISENHÜTTENTSTADT GMBH** | **Country**: DE | **Scientific person in charge**: Jörg MERNITZ
- **SWEREA MEFOS AB** | **Country**: SE | **Scientific person in charge**: Lena SUNDQVIST
- **UNIVERSITEIT VAN AMSTERDAM** | **Country**: NL | **Scientific person in charge**: Rudolf SPRIK
- **ARCELORMITTAL MAZIERES RESEARCH SA** | **Country**: FR | **Scientific person in charge**: Sophie CLAIRAY
- **SSAB EMEA AB** | **Country**: SE | **Scientific person in charge**: Bo SUNDELIN
Synopsis of RFCS Projects 2018-2021

TGA1 Iron and steelmaking

<table>
<thead>
<tr>
<th>847322</th>
<th>TACOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towards A zero CO2 Sintering</td>
<td></td>
</tr>
</tbody>
</table>

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 3,457,004.45</td>
<td>Start Date</td>
<td>01/06/2019</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 2,074,202.67</td>
<td>End date</td>
<td>31/12/2022</td>
</tr>
</tbody>
</table>

Abstract

In order to allow steelmakers to comply with ever stringernt environmental constraints, TACOS project aims at evaluating solutions bringing significant decrease of CO2 with consequently decrease of others main pollutants (a.o. NOx, SOx, VOC’s, dioxins and dust emissions):

- High bed heights operation for improved process internal thermal efficiency;
- Waste gas recirculation (selective and non-selective);
- Use of alternative heat inputs : (i) Alternative solid fuels (such as biomass) with or without pre-processings (gasification, hydrothermal conversion, torrefaction and pyrolysis); (ii) Combustible gases for injection at strand surface in combination with Waste Gas Recirculation to take profit of the recirculation hood; (iii) High temperature fumes produced in an external combustion chamber.

It is a CRM breakthrough technique which, combined with WGR (VeLoSint original lay-out) could reach theoretically up to 50% solid fuel saving.

For evaluation of the impact of these solutions on sintering process performances and emissions, tasks consists in modelling work (mathematical model, DEM), lab trials, sinter pot trials and industrial measuring campaigns and trials.

These solutions have significant impacts on Blast Furnace process, so a special focus is also placed on their impact on sinter quality (especially on its vertical segregation) and BF performances. For that purpose a a very wide set of complementary tools not use in usual industrial practise will be used and Multi-Point Vertical Probing’s will be carried out.

There are 5 partners participating to the project : CRM (BE - coordinator) ,ArcelorMittal Maizières (FR), Tata Steel Uhmiden (NL), RINA-CSM (IT) and Arvedi Siderurgica Triestina (IT).

Coordinator

CENTRE DE RECHERCHES METALLURGIQUES ASBL

Country	**Scientific person in charge**
BE | Mr Frédéric VAN LOO

Partners

ARCELORMITTAL MAIZIERES RESEARCH SA

Country	**Scientific person in charge**
FR | Mrs Ana-Maria IOSIF

TATA STEEL NEDERLAND TECHNOLOGY BV

Country	**Scientific person in charge**
NL | Dr Maria MARTINEZ_PACHECO

RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA

Country	**Scientific person in charge**
IT | Dr Filippo CIRILLI

ACCIAIERIA ARVEDI SPA

Country	**Scientific person in charge**
IT | Vincenzo DIMASTROMATTEO
This project proposes and tests new technologies/methods to counterbalance the factors limiting their recycling at sinter plant:

- content in undesirable chemical elements (Cu, Zn, alkalis, S, etc.);
- negative impact on pollutants emissions at sinter plant (dust, SOx, dioxins, etc.);
- fine size distribution and thus mostly negative impact on productivity.

In this context, the objective of this project is to use selective granulation and pre-processing techniques to achieve the desired synergetic effects (phase formation, pseudo nuclei, reduction of dust and pollutants, etc) or to remove the detrimental components before integration in sinter preparation and to assess and understand their impacts on the sintering process.

Recently developed concept of stiff vacuum extrusion (SVE) can help the recycling of by-products in the sinter plant to prevent or reduce diffuse dust emissions by agglomerating fine materials and to lower the hydrocarbon content of the sinter feed.

Stiff vacuum extrusion will be provide metallurgical properties of the BREX which meet the requirements of the sinter process with a lower level of the binder content compared with traditional briquetting technologies. Nevertheless this technique is not yet applied for the recycling of by-products at sinter plant. For this reason the new proposal aims to prove the recyclability of reverts and the use of lower grade iron ores at the sinter plant by reducing/avoiding their negative effects on the sintering process by using them.

The foreseeable benefits of this project are the following:

- increased competitiveness of European Steel Producers, by allowing a better use low quality raw materials and by-product recyclability;
- cost effective solutions for raw materials flexibility and productivity that can be easily selected through the use of the developed methodology within this project;
- improved resources efficiency by allowing a wider range of materials as input for the sinter mix

Coordinator

CENTRE DE RECHERCHES METALLURGIQUES ASBL

Country: BE Scientific person in charge: Rafael CONTRERAS

Partners

ARCELORMITTAL MAIZIERES RESEARCH SA
Country: FR Scientific person in charge: Mrs Ana-Maria IOSIF

TATA STEEL NEDERLAND TECHNOLOGY BV
Country: NL Scientific person in charge: Dr Maria MARTINEZ_PACHECO
Synopsis of RFCS Projects 2018-2021

TGA1 Iron and steelmaking

<table>
<thead>
<tr>
<th>ID</th>
<th>Project Name</th>
<th>Description</th>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>847293</td>
<td>SafeDewPoint</td>
<td>Acid dew point and corrosion sensors for dynamic waste heat recovery from steel mill flue gases</td>
<td>Research</td>
<td>42</td>
<td>€ 1,365,558.00</td>
<td>01/07/2019</td>
<td>31/12/2022</td>
</tr>
</tbody>
</table>

Abstract

Steel mill gases such as blast furnace gas, coke oven gas and basic oxygen furnace gas are used in coke plant, sinter plant, hot blast stoves, power plant and reheating furnaces. During the operation, fuel gas combinations can be changed every 30-60 minutes and the resulting sulphuric acid dew point temperature in the flue gas may vary between 80°C and 130°C. The flue gas temperature is usually fixed 10-20 K above the calculated maximal acid dew point (ADP) temperature to prevent corrosion damage. Thus valuable energy is lost in the periods with the lower ADP temperature. There is a potential to recover it and reuse for combustion air preheating.

The main objective of the proposal is to recover waste heat from combustion of steel mill flue gases by dynamic adjustment of the flue gas temperature above the acid dew point. For this inline monitoring of ADP temperature is required. In order to prevent damage to the heat exchangers and chimneys in case of measurement failure, inline corrosion monitoring is needed. Neither ADP nor corrosion rate monitoring has been applied in steel mill flue gases before.

In this project we will develop a novel inline ADP sensor with the reaction time of < 3 min. Furthermore, corrosion probes based on the measurement of resistance of a corroding wire will be adapted to steel mill flue gases to reach reaction time < 5 min and lifetime ≥ 7 days. Dynamic waste heat recovery concepts on basis of these measurement signals will be developed and validated in operational tests.

This innovation will enable improvement of energy efficiency of hot blast stoves, power plants and reheating furnaces by dynamic recovery of up to 20% waste heat from the flue gas using existing facilities. For the European steel industry it equals to savings of 3568 GWh/y or 107 million €/y and emission reduction of 720 ktCO2/y. It will support competitiveness and sustainability of European integrated steel plants.

Coordinator

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH

Country: DE
Scientific person in charge: Pavel IVASHECHKIN

Partners

SALZGITTER FLACHSTAHL GMBH

Country: DE
Scientific person in charge: Thomas LAPP

AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

Country: ES
Scientific person in charge: Daniel DE LA FUENTE GARCÍA

ARCELORMITTAL ESPANA SA

Country: ES
Scientific person in charge: Juan Jose ARRIBAS RAMIREZ
MinSiDeg

Minimise sinter degradation between sinter plant and blast furnace exploiting embedded real-time analytics

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Research</td>
<td>42</td>
<td>€ 2,646,869.60</td>
<td>01/07/2019</td>
<td>31/12/2022</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,588,121.76</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

High quality sinter produced with low costs and emissions is important for iron production. Stresses during transport generate return fines that must be processed again. Conventional sinter quality monitoring is slow and expensive.

In MinSiDeg, several innovative on-line methods for continuous quality monitoring will be established, and combined and exploited within new embedded real-time tools for machine supported quality control. The degradation during transport will be minimised by new transfer systems.

As a result, the losses due to transport will be minimised and high and stable quality sinter will be produced with low costs and energy consumption.

Coordinator

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH

Country: DE
Scientific person in charge: Dr Thorsten HAUCK

Partners

THYSSENKRUPP STEEL EUROPE AG
Country: DE
Scientific person in charge: Dr Stefan WIENSTRÖER

DK RECYCLING UND ROHEISEN GMBH
Country: DE
Scientific person in charge: Dr Carsten HILLMANN

VOESTALPINE STAHL DONAWITZ GMBH
Country: AT
Scientific person in charge: Dr Elman SCHUSTER

MONTANUNIVERSITAET LOEBEN
Country: AT
Scientific person in charge: Dr Michael PRENNER

K1-MET GMBH
Country: AT
Scientific person in charge: Dr Bernhard KÖNIG
Slagreus

Rew of slags from integrated steelmaking

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Research</td>
<td>42</td>
<td>€ 1,235,085.40</td>
<td>01/06/2019</td>
<td>30/11/2022</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>€ 741,051.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The main points of focus of the project will be the internal recycling of a Fe-enriched BOF slag fraction as a substitute for raw material as iron ore fines for the sinter plant and the external use of a Ca- and P-enriched BOF fraction as high valuable cement additive and fertilizer. A new processes chain will be developed to increase the reuse.

At the BOF slag special emphasis will be laid on a new process route to concentrate the Fe-content and reduce the P-content in the substitute. The route comprises a primary liquid Fe-enrichment by slag recirculation and secondary solid and dry Fe-enrichment processes. The enrichment processes take benefit from differences of physical and chemical slag properties as density, viscosity, solidification properties, magnetic susceptibility, hardness and thermal expansion.

The secondary Fe-enrichment consists of a microwave assisted comminution of the BOF slag, selective grinding and dry magnetic separation. The secondary Enrichment step will multiply the Fe-concentration in the substitute of the primary step and further reduce the P-content. Simultaneously the quality of the Ca-rich non magnetic fraction will be improved. Due to the dry processing of the BOF slag the produced Ca-rich fractions will keep the hydraulic properties. On this basis the Ca-rich fractions will be evaluated for an external use in the cement industry as a raw meal in clinker production and as alternative reactive cement main constituent. Also the external use of the CaO-rich fraction from magnetic separation as lime fertilizer will be evaluated.

The internal and external reuse concepts of SLAGREUS will be assessed regarding the environmental and economic advantages.

Coordinator

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH

DE Mr Roland PIETRUCK

Partners

VOESTALPINE STAHL GMBH

AT Dr Herbert SCHMID

INSTITUT FUR BAUSTOFF-FORSCHUNG EV

DE Mr David ALGERMISSEN

K1-MET GMBH

AT Dr Johannes RIEGER

OULUN YLIOPISTO

FI Dr Mamdouh OMRAN
The objective of the research project is to enhance the control of the hydrogen content during the different steps of liquid steelmaking, to reliably achieve low target hydrogen contents in the final product under reduced energy and resource consumption.

For this purpose, detailed investigations on hydrogen pick-up and removal throughout the key processes of liquid steelmaking, i.e. secondary metallurgy and continuous casting, will be performed. They will be accompanied by dedicated measurement campaigns of the hydrogen content dissolved in liquid steel and the transfer into the as cast material based on novel in-situ measurement technologies. The results of these investigations will be used to derive correlations of hydrogen content evolution with the process conditions during the different treatment steps with focus on ladle treatment as well as casting via the tundish. On this basis dynamic process models for the relevant mechanisms and metallurgical reactions of hydrogen pick-up and removal will be set up. The models will be used in combination with optimised in situ measurements to monitor and predict the evolution of the hydrogen content dissolved in liquid steel throughout the complete process chain.

A combination of model-based advisory system, in situ measurement strategies and dynamic control of process parameters will be developed to apply optimal operational practices for the quality-dependent demands, for a reliable achievement of the target hydrogen content in the final product under minimum energy and resource consumption. The complete system will be tested and validated under industrial conditions in plant trials and established for operational practice for the production of different steel grade groups.

Coordinator
VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH

Country
DE

Scientific person in charge
Dr Bernd KLEIMT

Partners
RHI AG
AT
Dr David WAPPEL

SIDENOR INVESTIGACION Y DESARROLLOSA
ES
Mrs Alonso IZASKUN

AKTIEN-GESELLSCHAFT DER DILLINGER HÜTTENWERKE
DE
Dr Helmut LACHMUND

MINKON SP ZOO
PL
Mr Mark POTTER
SPARERIB

Semi-coke Particles Evolution and Raceway Instrumentation at the Blast Furnace

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€2,782,883.65</td>
<td>Start Date</td>
<td>01/12/2018</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€1,669,730.19</td>
<td>End date</td>
<td>30/06/2022</td>
</tr>
</tbody>
</table>

Abstract

Semi-coke particles Evolution and Raceway Instrumentation at Blast Furnace. Coal behaviour in the shaft is unknown but highly important because of its influence on permeability, melting and smelting behaviour and therefore productivity.

Sensors and instrumentation techniques need to be developed and used in raceway/shaft models for understanding.

There have been numerous investigations on coal conversion in the raceway, but much less about the relationship between raceway and consequences on the shaft performance. There should be more measurements available: Shaft information can be gained from ArcelorMittal’s vertical probings at the EBF and industrial Hearth/raceway/dripping zone carbon/char built up from EBF and thyssenkrupp Steel core drills Raceway model development with ArcelorMittal, Tata Steel and Mefos

Coordinator

Country

TATA STEEL NEDERLAND TECHNOLOGY BV

NL Mr Jan VAN DER STEL

Partners

ARCELORMITTAL MAIZIERES RESEARCH SA

FR Dr. Dominique SERT

SWEREA MEFOS AB

SE Prof Lena SUNDQVIST

CENTRE DE RECHERCHES METALLURGIQUES ASBL

BE Mr Olivier ANSEEAU

RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN

DE Dr Alexander BABICH

THYSSENKRUPP STEEL EUROPE AG

DE Dr Alexandra HIRSCH
Synopsis of RFCS Projects 2018-2021

TGA1 Iron and steelmaking

<table>
<thead>
<tr>
<th>800762</th>
<th>ECOSLAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>Eco-friendly steelmaking slag solidification with energy recovery to produce a high quality slag product for a sustainable recycling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 233,670.35</td>
<td>Start Date</td>
<td>01/06/2018</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,402,022.01</td>
<td>End date</td>
<td>30/11/2021</td>
</tr>
</tbody>
</table>

Abstract

The project aim is to find technical solutions for heat recovery from steelmaking slags while producing a high quality slag product for external or process internal utilization. Three main topics will be investigated:

1. Development and testing of an advanced process for heat recovery and material recycling by recharging of hot LF slag into the EAF process as lime substitute (MAU, FEhS);
2. Development and testing of heat recovery, drying and recycling of BOF slag by further developing the current technology partially developed by SFTec (SFTec, MEFOS);
3. Development and testing of an advanced air/water granulation of EAF slag directly at the furnace (online EAF slag treatment) (Tenova, ACP, CSM);
4. Development of heat utilization concepts for the recovered heat from steelworks slags and investigation / evaluation of technical solutions for:
 - the recovery of heat from slag in a heat vector (water, air, steam) to be used directly in the steel process (i.e. solid material drying, scrap pre-heating) or to produce valuable energy to export (i.e. hot water for district heating) (SIDENOR, CICe, Tenova, MEFOS, SFTec);
 - direct generation of electrical energy by thermoelectrical technology (CSM, Tenova, ACP);

Different solidification methods will be investigated in order to give options to the steelwork as to the method that will work for them while finding solutions for:

1) transport, storage and distribution of liquid steel slag directly after tapping;
2) alternative solidification methods to avoid/minimise the use of direct water cooling obtaining a proper cooling rate to be maintained during the solidification stage of slag and the handling of hot solidified slag;
3) to provide a suitable slag (high energy content, but transportable) for internal recycling in the steelmaking process or for a conventional system for the recovery of the heat;
4) reducing as much as possible the dust dispersion and gas emission during the slag cooling/handling;
5) producing marketable slag.

Coordinator

INSTITUT FUR BAUSTOFF-FORSCHUNG EV

Country: DE
Scientific person in charge: Mr David ALGERMISSEN

Partners

MAX AICHER UMWELT GMBH
SIDENOR INVESTIGACION Y DESARROLLOSA
CENTRO DE INVESTIGACION COOPERATIVA DE ENERGIAS ALTERNATIVAS FUNDACION
TENOVA SPA
RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA
A.C.P. SRL
SWEPÅA MEFOS AB
SFTEC OY

Country

DE
ES
ES
IT
IT
SE
FI

Scientific person in charge

Dr Dirk MUDERSBACH
Dr Inigo UNAMUNO
Dr Inigo ORTEGA
Ms Marta GUZZON
Dr Loredana DI SANTE
Mr Rolando ROLANDO
Dr Johan BJÖRKVALL
Mrs Virpi LEINONEN
Synopsis of RFCS Projects 2018-2021

TGA1 Iron and steelmaking

<table>
<thead>
<tr>
<th>Project Code</th>
<th>WHAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info</td>
<td>Water and related energy Hub Advanced Management system in steelworks</td>
</tr>
<tr>
<td>Type of Project</td>
<td>Research</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>42</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 2,159,818.20</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,295,890.92</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/09/2018</td>
</tr>
<tr>
<td>End date</td>
<td>28/02/2022</td>
</tr>
</tbody>
</table>

Abstract

The overall objective of the WHAM project is to radically change the current water paradigm, by developing an innovative approach to improve the efficiency of the global water system reducing the water consumption, increasing the reusability by the adoption of innovative technologies. The project aims to set-up a widely deployable methodology based on a customizable supervision system targeted to industrial water networks which are typically found in the steelworks.

Moreover innovative water treatment will be tested in several use cases. Such system will implement diagnostic capabilities aiming at highlighting water losses and water systems malfunctioning by jointly achieving an efficient steelworks water circuit management. Moreover WHAM aims at lowering the water intake minimizing the ecological foot print incrementing the recycling of water while assuring sufficient water quality for process conduction. The monitoring and optimization system connected to the innovative water treatment constitute powerful tools to improve the water and related energy utilization by achieving the following targets:

- a correct management of the different water sources, including rain water, depending on the requirements and operating conditions of each process;
- the minimization of the cooling water losses;
- the improvement of the energy efficiency of the water circuit by adjusting the operation mode of its units;
- the minimization of the freshwater consumptions, by jointly reducing the related costs in terms of energy and chemical additives and improving the overall environmental impact of the production process
- the increase of water reusability recycling back into the process current wastewaters such as the cleaning solutions through the adoption of innovative water treatments.

Coordinator

RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA
IT
Ms Teresa BEONE

Partners

OPTIMIZACION ORIENTADA A LA SOSTENIBILIDAD SL
ES
Mr Carlos LEYVA GUERRERO

FERRIERE NORD SPA
IT
Dr Loris BIANCO

BROCHIER TECHNOLOGIES
FR
Dr Laure PERUCHON

SCUOLA SUPERIORE DI STUDI UNIVERSITARI E DI PERFEZIONAMENTO SANT’ANNA
IT
Dr Valentina COLLA

DALMINE SPA
IT
Mr Fabio PRAOLINI

SOFI FILTRATION OY
FI
Mr Ville HAKALA

ARCELORMITTAL INNOVACION INVESTIGACION E INVERSION SL
ES
Ms Elena PIEDRA FERNANDEZ
<table>
<thead>
<tr>
<th>800643</th>
<th>LOWCARBONFUTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploitation of projects for Low-Carbon future steel industry</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Accompanying Measures</th>
<th>Duration (months)</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 950,332.80</td>
<td>Start Date</td>
<td>01/04/2018</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 950,332.80</td>
<td>End date</td>
<td>31/03/2020</td>
</tr>
</tbody>
</table>

Abstract

The Accompanying Measure activity “LowCarbonFuture” summarizes, evaluates and promotes research projects and knowledge dealing with CO2 mitigation in iron and steelmaking. Current pan-European research is focused on the three pathways Carbon Direct Avoidance (CDA), Process Integration (PI) and Carbon Capture, Storage and Usage (CCU).

“LowCarbonFuture” will generate a roadmap stating research needs, requirements and boundary conditions for breakthrough technologies and a new CO2 lean steel production to guide the EU steel industry towards the world’s climateagreements and the EU climate goals, e.g. by implementing the key findings in the strategic research agenda of the European Steel Technology Platform (ESTEP). Furthermore, “LowCarbonFuture” will contribute to an update of the steel roadmap for a low carbon Europe 2050 and the current Big-Scale initiative of EUROFER.

Coordinator

| VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH | DE | Mr Gerald STUBBE |

Partners

CENTRE DE RECHERCHES METALLURGIQUES ASBL	BE	Mr Jean BORLÉE
RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA	IT	Dr Filippo CIRILLI
K1-MET GMBH	AT	Dr Johannes RIEGER
SWEREA MEFOS AB	SE	Dr Lawrence HOOEY
Technical Group Steel 2

Downstream Steel Processing

The scope TGA2 includes:

- Chemistry and physics of solidification & precipitation related to casting processes
- Continuous casting, ingot casting and near net shape casting techniques with or without direct rolling for flat and long products
- Heat treatment technology, including reheating furnaces, and thermal treatments
- Hot and cold rolling
- Reliability of production processes and maintenance of production lines
- Surface engineering, chemical treatments, finishing and coating technologies
- Instrumentation, modelling, control and optimisation of downstream steel production processes
- Reduction of emissions, energy consumption and improvement of the environmental impact in downstream processes
- Energy, water and material flow management in downstream
Synopsis of RFCS Projects 2018-2021

TGA2 Downstream steel processing

<table>
<thead>
<tr>
<th>Project Code</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10103991</td>
<td>HatFlat</td>
</tr>
</tbody>
</table>

Holistic Assistance for Cross-Process Analysis and Prediction of Strip and Plate Flatness

<table>
<thead>
<tr>
<th>Info</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Project</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>Duration (months)</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 2,403,414.60</td>
<td></td>
</tr>
<tr>
<td>Start Date</td>
<td>01/07/2021</td>
<td></td>
</tr>
<tr>
<td>End date</td>
<td>31/12/2024</td>
<td></td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,442,048.76</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

In flat steel production, flatness of steel strips and plates is of paramount significance for a safe and stable process operation and essentially defines final product quality. Although local flatness is controlled successfully during rolling, many steel plants face significant flatness problems for thin and/or high-strength steel products in downstream processes and after production.

HatFlat investigates cross-process influences on the development of flatness defects. Using digital twins and the novel combination of classical first-principle models and machine learning methods, a holistic understanding is achieved, and most sensitive process parameters are identified. An assistance software will be developed, that supports operators to improve flatness.

Coordinator

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>Mr Julian KREMEYER</td>
</tr>
</tbody>
</table>

Partners

- **THYSSENKRUPP STEEL EUROPE AG**
 - DE Dr Christoph EVERS
- **THYSSENKRUPP HOHENLIMBURG GMBH**
 - DE Mr Markus MALMS
- **RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA**
 - IT Dr Filippo AVELLINO
- **MARCEGAGLIA PLATES SPA**
 - IT Mr Michele QUARGNALI
- **FAGOR ARRASATE S COOP**
 - ES Dr Elena SILVESTRE SORIANO
- **KONIKER S COOP**
 - ES Mr Jon RODRIGUEZ
Synopsis of RFCS Projects 2018-2021

TGA2 Downstream steel processing

898817

BURWEAR

Modelling and reduction of back-up roll wear in cold rolling and temper rolling mills

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 2,406,850.10</td>
<td>Start Date</td>
<td>01/10/2020</td>
<td></td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,444,110.06</td>
<td>End date</td>
<td>30/09/2024</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Performance of Back-Up Rolls (BURs) in flat rolling mills is limited by two factors, namely wear and rolling contact fatigue (work hardening). In practice, BURs often exhibit very inhomogeneous wear rates over their barrel length. Local wear rates and the resulting BUR wear profiles are usually not understood and (thus) not well predicted.

The BUR wear profile has, in turn, a large effect on the local Hertzian work roll - BUR contact stress distribution along the BUR barrel length. This crucial parameter for rolling contact fatigue is also unknown and also highly inhomogeneous. Consequently, also the onset of local rolling contact fatigue at the BUR surface is poorly predicted and may in fact differ strongly between consecutive mill campaigns of the same BUR, so that mills struggle to define adequate (= safe and economical) practical maximum BUR campaign length limits.

BUR wear is affecting the rolling mills in 4 ways: Rolling process stability (risk of pinching), product quality (strip shape deviations), loss of mill OEE (when unscheduled BUR changes are needed) and costs associated with BUR consumption.

In this view, the project aims to:

- Develop and validate a physical model that quantitatively describes the evolution of the back-up roll wear profile during a cold rolling or temper rolling campaign;
- Develop and validate a second model (coupled to the first model) that quantitatively describes the evolution of back-up roll contact fatigue during a cold rolling or temper rolling campaigns
- Utilize these models to:
 - (a) improve strip shape control (avoid pinching and improve product quality).
 - (b) optimize scheduling of back-up roll changes and increase back-up roll campaign length.
 - (c) enhance mill output and reduce operating costs of the rolling mill.

Coordinator

Country

Scientific person in charge

TATA STEEL NEDERLAND TECHNOLOGY BV

NL
Dr Petrus Henk BOLT

Partners

CENTRE DE RECHERCHES METALLURGIQUES ASBL

BE
Dr Grégory ESSER

GONTERMANN-PEIPERS GMBH

DE
Mr Peter HEISTERKAMP

UNIVERSITEIT TWENTE

NL
Dr Matthijn DE ROOIJ
RollProf

On-line and real time measurement of ROLL PROFILE in hot and cold rolling mills

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pilot&Demonstration</td>
<td>42</td>
<td>€ 1,019,190.00</td>
<td>01/07/2020</td>
<td>31/12/2023</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td></td>
<td>€ 509,595.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

This pilot and demonstration project aims to develop an ON-LINE / REAL-TIME measurement system for ROLL PROFILES in HOT and COLD rolling. The system will allow in the harsh rolling mill environment to measure the profile of work rolls and pinch rolls during rolling. A very high accuracy is aimed over a roll table width up to 2m. The measured data will be used to optimise/validate roll crown evolution models integrated in flatness control. In the future also real-time control actuators for roll profile control can be envisaged improving the flatness of hot and cold rolled products.

Coordinator

CENTRE DE RECHERCHES METALLURGIQUES ASBL

BE Ms Genevieve Moreas

Partners

TATA STEEL NEDERLAND TECHNOLOGY BV

NL Mr Leon JACOBS

ARCELORMITTAL ATLANTIQUE ET LORRAINE SAS

FR Mr Damien FEUILLU

ARCELORMITTAL MAIZIERES RESEARCH SA

FR Mr Nelson SOUTO
ReduHeatLoss

Reduction of Heat Losses during Hot Rolling of Long Products

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>42</td>
<td>€ 2,750,524.00</td>
<td>01/07/2020</td>
<td>31/12/2023</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,650,314.40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

ReduHeatLoss aims to reduce heat losses during hot rolling of long products. To improve the efficiency of the hot rolling process heat losses have to be minimised. There are heat sinks/heat losses in form of temperature losses that cannot be reduced without a high financial and technical effort due to the design and process management of the existing rolling mills like heat dissipation by radiation, convection and contact with plant components such as roller conveyor rolls. Other heat sinks such as descaling, work roll cooling and cross sprays can be minimised with little effort in terms of design or process engineering. The main aspects in ReduHeatLoss deal with the process steps leading to heat losses in hot rolling due to the descaling and work roll cooling processes. These processes have a significant influence on product quality and work roll performance. To improve this situation new work roll cooling and descaling systems need to be developed and implemented. Moreover, stress sources vary because of the different and extremely complex deformation process of long product rolling.

ReduHeatLoss pursues the following aspects:

(i) Optimised descaling strategies to reduce heat losses.
(ii) Optimised cooling strategies to reduce heat losses.
(iii) Online and intelligent control system of the optimised descaling and roll systems.

Main focus is to improve heat transfer (heat transfer coefficient). The new strategies will optimise selective removal of heat, furthermore reduce of temperature drops at the rolled material and reduce of thermal stress in the work roll. These will increase product quality and work roll performance. The connected results will be integrated into the pass sequence system of the participated plants, adjusted to the need for descaling and work roll cooling. If the new systems will lead to an improvement, they will be adapted to other sections of the involved plants. Furthermore, the results can also be transferred into European Steel Industry.

Coordinator

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH

DE Mr Tuncer UEMIT

Partners

MANNSTAEDT GMBH

DE Mr Martin SCHÜTT

HAUHINCO MASCHINENFABRIK G. HAUSHERR, JOCHUMS GMBH & CO. KG

DE Dr Dirk SCHULZE-SCHENCKING

CENTRE DE RECHERCHES METALLURGIQUES ASBL

BE Mr Hugo UIJTDEBOEKS

ARCELORMITTAL INNOVACION INVESTIGACION E INVERSION SL

ES Mr Aran MATIAS

VYSOKE UCENI TECHNICKE V BRNE

CZ Dr Michal POHANKA

OMRON ELECTRONICS GMBH

DE Mr Marc WÖRNER
TGA2 Downstream steel processing

899391 AUSSENS

Phase transformation measurement for mechanical properties control and assessment

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pilot & Demonstration</td>
<td>42</td>
<td>€ 1,595,431.95</td>
<td>01/07/2020</td>
<td>31/12/2023</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 797,715.99</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Austenite fraction at specific steps of the final thermal cycle in continuous galvanizing and annealing lines is a key parameter with respect to the end-user properties of high strength steel strips with potential savings up to 230 k€ per year for lines. This proposal aims at assessing the industrial prototype of a new electromagnetic sensor based on continuous measurement, in locations of the process where existing sensors are either very expensive, not able to operate or not sufficiently precise. This will be done in real time on moving strips in continuous galvanizing and annealing lines.

Coordinator

CENTRE DE RECHERCHES METALLURGIQUES ASBL
BE Mr Olivier HERBIET

Partners

- **ARCELORMITTAL BELGIUM NV**
 BE Mr Yannick BRUYERE
- **SEGAL**
 BE Mr Bertrand LEJEUNE
- **TATA STEEL NEDERLAND TECHNOLOGY BV**
 NL Mr Frenk VAN DEN BERG
- **ARCELORMITTAL MAIZIERES RESEARCH SA**
 FR Mr Philip MEILLAND
Synopsis of RFCS Projects 2018-2021

TGA2 Downstream steel processing

<table>
<thead>
<tr>
<th>899455</th>
<th>PROTEUS-RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Product Quality Optimisation through Enhancement and Utilisation of Residual Stress minimising Process Strategies</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€1,741,214.95</td>
<td>Start Date</td>
<td>01/07/2020</td>
<td></td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€1,044,728.97</td>
<td>End date</td>
<td>31/12/2023</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

During rolling, straightening and thermal processing of long products internal stresses arise impairing the products material properties and causing material distortion due to stress relief mechanisms. The characteristics of those effects are still associated with a high degree of uncertainty.

PROTEUS-RS aims to overcome these constraints by:

- Definition of an improved process strategy and control using predictive variables.
- Development of a hybrid process model comprising improved physical process models and data-based statistical models.
- Implementation of a digital twin of the rolled long products.
- Development of soft-sensors for an improved process control.

Thus PROTEUS-RS will allow a highly reliable and well documented processing of precise long products (perfect shape, contour accuracy, straightness), reducing scrap, production downtimes and failures and customer complaints. PROTEUS-RS will enhance existing production mills to handle new innovative steel grades and to face the challenging demands of the customers regarding high precision steel grades. This will secure the technological leadership of European steel industry.

Coordinator

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH

DE Dr Volker DIEGELMANN

Partners

INSTYTUT METALURGII ZELAZA IM STANISLAWA STASZICA

PL Prof Roman KUZIAK

SIDENOR INVESTIGACION Y DESARROLLOSA

ES Mr Victor Manuel SANTISTEBAN

MANNSTAEDT GMBH

DE Andreas FALCK

AKADEMIA GORNICZO-HUTNICZA IM. STANISLAWA STASZICA W KRAKOWIE

PL Dr Lukasz RAUCH
VALCRA

Valorisation and dissemination of RFCS projects results and experience in steel surface quality issues: on as-cast cracks formation

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Accompanying Measures</th>
<th>Duration (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 477,008.60</td>
<td>Start Date</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 477,008.60</td>
<td>End date</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01/06/2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30/11/2020</td>
</tr>
</tbody>
</table>

Abstract

In the framework of the European Steel research programmes (ECSC and RFCS) many projects have been carried out on the formation of cracks in continuous casting, aiming at facing this occurrence and its harmful impact on surface and internal product quality. Within these projects, deep fundamental investigations, measurement technologies, process models and online control approaches were developed. The objective of this dissemination project is to analyse, valorise and disseminate the achieved knowledge and results obtained in the previous projects in the mentioned topics. Also a road map with future industrial targets and research needs will be defined.

Coordinator

RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA

Country: IT
Scientific person in charge: Dr Arianna GOTTI

Partners

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH
Country: DE
Scientific person in charge: Dr Carsen TSCHEUSCHNER

MATERIALS PROCESSING INSTITUTE
Country: UK
Scientific person in charge: Mr Alan TAYLOR

SIDENOR INVESTIGACION Y DESARROLLOSA
Country: ES
Scientific person in charge: Mrs Izaskun ALONSO OÑA

SWEREA MEFOS AB
Country: SE
Scientific person in charge: Dr Pavel Ernesto RAMIREZ LOPEZ
OPTILOCALHT

Optimisation of Local Heat Transfer in the CC Mould for Casting Challenging and Innovative Steel Grades

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research Duration (months)</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 3,787,665.20</td>
<td>Start Date</td>
<td>01/07/2019</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 2,289,415.04</td>
<td>End date</td>
<td>30/06/2023</td>
</tr>
</tbody>
</table>

Abstract

Currently, mould powder selection is a compromise between the conflicting requirements for controlling the rate of heat transfer and lubrication. OPTILOCALHT offers the opportunity to ‘uncouple’ these functions when casting crack-sensitive micro-alloyed and peritectic grades; as well as reducing the negative impact on infiltration and lubrication due to reactions between slag and Al and Ti present in innovative steel grades.

Four main approaches are proposed:

1. **Easy to apply “intumescent coating”** that increases interfacial resistance only on specific areas of the mould and is removed with the strand at the end of the sequence. This creates the possibility of mild cooling in the meniscus region whilst maintaining lubrication or permitting higher rates of heat transfer lower in the mould, to allow faster casting.

2. **“Electrical methods”** that induce local changes in the crystalline structure of the slag film to produce the required local heat flux for optimal strand solidification and changes in wettability and viscosity to control flux consumption and lubrication.

3. **Advanced numerical simulations** to predict the ideal heat fluxes for given mould designs and casting process parameters.

4. **Advanced High-Resolution temperature measurements** based on an Industry 4.0 platform capable of online display and analysis of heat transfer data combined with caster performance records.

Small-scale laboratory trials, cold finger tests, pilot plant trials and industrial trials on bloom and billet casters will be supported by the development of new and fast techniques for the characterisation of slag film properties relevant to heat transfer. In addition, virtual and augmented reality, digital twinning and remote access will be used to provide new insights into the continuous casting process and to evaluate the performance of the coating and electrical methods in modifying local heat transfer to improve product quality.

Coordinator

MATERIALS PROCESSING INSTITUTE
UK
Adam HUNT

Partners

SWEREA MEFOS AB
SE
Dr Pavel RAMIREZ LOPEZ

SANDVIK MATERIALS TECHNOLOGY AB
SE
Dr Karin HANSSON-ANTONSSON

ARCELORMITTAL MAZIERES RESEARCH SA
FR
Ms Maite CORNILLE

THE UNIVERSITY OF WARWICK
UK
Dr Zushu LI

THE OPEN UNIVERSITY
UK
Prof Rongshan QIN

ABB AB
SE
Mr Hongliang YANG

SIDENOR INVESTIGACION Y DESARROLLOSA
ES
Dr Diana MIER VASALLO
Synopsis of RFCS Projects 2018-2021

TGA2 Downstream steel processing

<table>
<thead>
<tr>
<th>847341</th>
<th>CentriClean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Project</td>
<td>Research</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>43</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 1,379,954.90</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/06/2019</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 751,768.14</td>
</tr>
<tr>
<td>End date</td>
<td>31/12/2022</td>
</tr>
</tbody>
</table>

Abstract

Modern batch and continuous galvanizing processes still suffer from the production of large amounts of zinc ash, top dross and/or bottom dross that induce downgraded products, reduce productivity or demands frequent line stops for dross removal, as many sources of safety issues for operators to clean the bath.

The project will focus on:

- New concepts to reduce dross production and corrosion of immersed equipment,
- Cleaning of industrial melts by centrifuge means to separate the small abrasive solid particles from the corrosive base liquid metal (various Al content),
- Exploration of new upcycling ways for such depreciated wastes.

Coordinator

CENTRE DE RECHERCHES METALLURGIQUES ASBL
BE
Mr Olivier BRÉGAND

Partners

- **ARCELORMITTAL MAIZIERES RESEARCH SA**
FR
Mr Matthieu DIDIER
- **TATA STEEL NEDERLAND TECHNOLOGY BV**
NL
Dr Edzo ZOESTBERGERN
- **NV BEKAERT SA**
BE
Dr Lucia SUAREZ
- **REZINAL**
BE
Mr Kristiaan DECKERS
- **INTERNATIONAL ZINC ASSOCIATION - EUROPE**
BE
Dr Frank GOODWIN
Synopsis of RFCS Projects 2018-2021

TGA2 Downstream steel processing

<table>
<thead>
<tr>
<th>#</th>
<th>Project Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| 847334| **RealTimeCastSupport** | *Embedded real-time analysis of continuous casting for machine-supported quality optimisation*

<table>
<thead>
<tr>
<th>Info</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Project</td>
<td>Research</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>48</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 2,100,785.65</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/07/2019</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,260,471.39</td>
</tr>
<tr>
<td>End Date</td>
<td>30/06/2023</td>
</tr>
</tbody>
</table>

Abstract

The thermal and fluid-mechanical conditions in continuous casting moulds are not precisely known although highly relevant for the product quality. Manual process control is very difficult due to the big number of influencing factors which are often happening time-shifted. Therefore the aims of the proposed project are the optimised control and digitalisation of continuous casting machines aiming at an optimised product quality. Large data streams from different sources and of different types will be taken into account online in a Big Data environment. Assistance for the caster operators will be given by real-time support system. It will provide suggestions for adjusted casting conditions in real-time. Additionally predictions of defect probabilities will be estimated based on the current caster status and an intensified product inspection will be suggested if necessary.

These project aims will be supplemented by new measurement technologies for thermal and caster powder monitoring. Defect promoting scenarios will be identified by application of statistical data analytics and correlations with quality data of the heavy plates and cold-rolled strips. These scenarios will be represented with a digital twin of the continuous casting machine aiming at identification of thermal and fluid-mechanical reasons for the observed defects. The digital twin allows also the development of countermeasures aiming at the avoidance of decreasing rolled product quality.

The proposed work will lead to rules and guidelines which will be checked in real-time assessing the current status of the casting machine. The findings from the statistical data analytics as well as the developed countermeasures will be the basis for the rules and guidelines aiming at an optimised process control. Both will be integrated in the real-time support system and applied online. The effectiveness of this approach will finally be verified in industrial trials.

Coordinator

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH
DE Kersten MARX

Partners

AKTIEN-GESELLSCHAFT DER DILLINGER HÜTTE
DE Dr Helmut LACHMUND

VOESTALPINE STAHL GMBH
AT Dr Sergiu ILIE

MATERIALS PROCESSING INSTITUTE
UK Mr Sergiu HIGSON

MINKON SP ZOO
PL Mr Mark POTTER
Synopsis of RFCS Projects 2018-2021

TGA2 Downstream steel processing

847318

CleanEx

On-line characterisation of the cleanliness of coils to be galvanised for exposed automotive parts

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Pilot&Demonstration</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 1,451,868.30</td>
<td>Start Date</td>
<td>01/06/2019</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 725,934.16</td>
<td>End date</td>
<td>30/11/2022</td>
</tr>
</tbody>
</table>

Abstract

Today, automotive steel customers are very demanding concerning the coating quality, especially for exposed parts for which no defect is allowed.

To satisfy this requirement at the exit of the galvanising line, the perfect cleanliness of the substrate surface after the cleaning section in terms of carbon pollution and iron fines must be ensured. Indeed, if carbon (as component of the mill oil) is still present at the surface when entering the furnace, furnace pollution will occur in the long term by production of soot that will not only stay on the furnace walls but will eventually lead to dirt falling on the rolls and/or on the strip.

On the other side, the iron fines can also lead to roll pick-up defects inside the furnace, to an increase of dross in the bath by combination with zinc and aluminium and also to a drift of the bath composition.

These phenomena will eventually result in aspect defects on the final product.

A direct on-line measurement is so mandatory to fully evaluate and control the surface cleanliness all along the coil and is more and more required by customers as an assurance of final product quality.

Using this cleanliness measurement, the cleaning section can be optimized by adjusting relevant parameters, such as the brushes pressure, the solution composition, the current applied if electrolytic cleaning is used.

As, today, no on-line method able to separately measure the mentioned pollutants exists on the market, this project aims at developing an on-line system using the LIBS principle. This will be realized by using an innovative approach that will allow reaching the measurement sensitivity required after the cleaning section.

This system will so constitute the basis for future tuning procedures of this section.

Coordinator

CENTRE DE RECHERCHES METALLURGIQUES ASBL

Country	Scientific person in charge
BE | Mrs Genevieve MOREAS

Partners

TATA STEEL NEDERLAND TECHNOLOGY BV

Country	Person in charge
NL | Dr Christophe PELLETIER

SEGAL

BE | Mr Michel MASSON

ARCELMITTAL MAIZIERES RESEARCH SA

FR | Dr Cyrielle ROQUELET

ARCELMITTAL BELGIUM NV

BE | Joseph DI GIROLAMO

TGA2 Downstream steel processing

847237 BURNER 4.0

Development of a new burner concept: Industry 4.0 technologies applied to the best available combustion system for the Steel Industry.

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 1,991,506.15</td>
<td>Start Date</td>
<td>01/06/2019</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,194,903.69</td>
<td>End date</td>
<td>30/11/2022</td>
</tr>
</tbody>
</table>

Abstract

Combustion systems and burners for the Steel Industry have been improved in the recent years focusing on energy saving, pollutant emissions reduction and process flexibility. Burner 4.0 Project is aimed to extend the present technological limits of the combustion systems concerning different areas (design, manufacturing, control & process optimization, operating life & maintenance) to new ones through a challenging combined application of the Industry 4.0 technologies. Additive manufacturing, Internet of Things, Smart Sensors, Big Data Analytics for process optimization and predictive maintenance will be introduced to the present burners leading to a break-through burner concept for the Steel Industry.

Coordinator

TENOVA SPA
Mr Massimiliano FANTUZZI

Partners

- ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS
 Dr Nikolaos NIKOLOPOULOS
 EL
- CONSIGLIO NAZIONALE DELLE RICERCHE
 Dr Mariarosaria CEGLIE DE JOANNON
 IT
- ARCELORMITTAL ESPANA SA
 Dr Victor CUERVO
 ES
- DALMINE SPA
 Mr Maurizio RONDI
 IT
- POLITECNICO DI MILANO
 Prof Nicola PAROLINI
 IT
- RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA
 Mr Guido JOCHLER
 IT
- SC SILCOTUB SA
 Giuseppe BROLIS
 RO
Synopsis of RFCS Projects 2018-2021

TGA2 Downstream steel processing

800769

HIGHSPEEDGALVANIZING

Towards galvanizing at higher speed through roll rotation improvements, strip stabilizing at wiping level and adapted dross skimming

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 3,119,235.75</td>
<td>Start Date</td>
<td>01/06/2018</td>
<td></td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,871,541.45</td>
<td>End date</td>
<td>31/05/2022</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Increasing the galvanizing line speed is challenging for reducing the production cost. A lot of galvanizing lines are presently reaching speed about 160 m/min depending on the strip format. However, steel customers are still more and more demanding for high coating quality without any surface defects.

Several issues, regarding the bath galvanizing area, are limiting the increase of line speed. In fact, running above 200 m/min is not of current practice in industrial lines. Among those topics, bath immersed hardware, intensive skimming and wiping are of major importance.

The objectives to be reached in this proposal are in short to face issues impeding galvanizing high line speed by:

- The development of new bearings giving a smooth roll rotation at high line speed with a low maintenance profile, through ball-bearing improvement and new “tight” bearing conception.
- The improvement of the dedrossing operation coherent with high production of surface scums.
- The development at a pilot stage of new co-wiping equipment.

Such kinds of development are in line with the constant increase of productivity of most HDGL. Of course, other parts of such complex production lines are susceptible of impeding line speed increase, but a lot of research work is also dedicated to these (increase of furnace capacity, cooling capacity increase, etc...).

Solutions brought in this research project will also help opening solutions for other types of metallic baths. In parallel with an increase of the line speed, effects are also awaited on the coating quality in terms of repeatability and stability. Better conditions for labor work are also expected.

Coordinator

CENTRE DE RECHERCHES METALLURGIQUES ASBL

Country BE | **Scientific person in charge** Mr Yves HARDY

Partners

- **ARCELORMITTAL MAIZIERES RESEARCH SA** FR | Dr Pauline BRIAULT
- **ARCELORMITTAL BREMEN GMBH** DE | Mr Mitja KRAUSE
- **VDEH-BETRIEBSFORSCHUNGsinstitut GMBH** DE | Dr Jochen KURZynski
- **THYSSENKRUPP STEEL EUROPE AG** DE | Mr Michael PETERS
- **COMTES FHT AS** CZ | Mr Michal DUCHEK
- **DUMA-BANDZINK GMBH** DE | Dr Daniel PLAETZER
- **TATA STEEL NEDERLAND TECHNOLOGY BV** NL | Dr Jaap VANEENNAAM
- **V2I** BE | Dr Daniel SIMON
- **UNIVERSITE DE LIEGE** BE | Prof Jean-Claude GOLINVAL
- **HEEMSKERK INNOVATIVE TECHNOLOGY BV** NL | Dr Cock HEEMSKERK
800644 PMAPIA

Precipitation of Micro Alloy Particles in B and Mn alloyed steel grades and their Interaction between elements, segregation, and defects during continuous casting

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Start Date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>Research</td>
<td>46</td>
<td>01/06/2018</td>
<td>31/03/2022</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 2,061,162.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>欧盟支持</td>
<td>€ 1,236,697.20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Today, micro-alloyed steel grades represent 80% of the total production by European engineering steel mills. In parallel, European producers are working on next generation AHSS concepts with high Mn contents. Both classes of steels present many industrial problems related to solidification and cooling in the continuous casting (CC) process.

The overall objective of the PMAPIA project is to reduce yield loss and requirements for surface repair due to cracking defects in CC semis by optimization of micro alloying, steel composition, and casting parameters.

In engineering steels, B and S are added to micro-alloyed steels to increase hardenability and machinability, respectively. The earlier PMAP project (RFSR-CT-2012-00008) showed that B and S are responsible for micro-segregation, increasing the risk of cracking. S reduces hot ductility whereas B increases the sensitivity to cracking during tertiary cooling. Preventing B precipitation as BN markedly improves hot ductility. PMAP showed that Mn additions counteract the negative effect of S, however high Mn content degrades hot ductility. This is a problem in higher Mn steels. It was shown that MnS secondary precipitation impairs hot ductility. These findings opened new lines of investigation for making a step improvement in the cracking problems in these steels.

PMAPIA aims to alleviate B micro-segregation induced cracking by defining the interaction between B, S, Mn, and other elements. B and S compete at austenite grain boundaries, and their interaction needs to be quantified, as B is able to counteract grain boundary decohesion, meaning B can potentially have both negative and positive effects on cracking resistance. The project will perform laboratory and pilot scale investigation followed by in-field validation of the mechanisms of interaction between elements, their segregation, and cracking. The results of this validation will be new guidelines for safe industrial casting practices for these steels.

Coordinator

SWERA KIMAB AB

Country | Scientific person in charge
SE | Dr Jacek KOMENDA

Partners

SIDENOR INVESTIGACION Y DESARROLLOSA | ES | Dr Gonzalo ALVAREZ DE TOLEDO BANDEIRA
MATERIALS PROCESSING INSTITUTE | UK | Mr Gareth FLETCHER
RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN | DE | Prof Dieter SENK
VOESTALPINE STAHL GMBH | AT | Dr Guangmin XIA
ASOCIACION CENTRO TECNOLOGICO CEIT-IK4 | ES | Dr Jon ARRUABARRENA
TGA2 Downstream steel processing

799295

<table>
<thead>
<tr>
<th>CONSOLCAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprehensive Modelling, Monitoring and Control of Solidification for Optimisation of Continuous Casting Process</td>
</tr>
</tbody>
</table>

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 2,096,194.00</td>
<td>Start Date</td>
<td>01/07/2018</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,257,716.00</td>
<td>End Date</td>
<td>30/06/2022</td>
</tr>
</tbody>
</table>

Abstract

In the continuous casting process there are several performance indicators which are of utmost importance, namely, safety, costs, productivity, yield, product quality and delivery on time. There is one event which can impact on all these performance indicators, that is, the strand breakout, which is defined as the rupture of the solidifying shell, resulting in the termination of casting on the affected strand and in some instances of the casting machine.

For all caster operators, the challenge is to cast both established and new steel grades at ever increasing casting speeds, whilst maximising prime cast product and ensuring the security of the casting machine, that is, no strand breakouts. To this end it is important to understand, monitor and control solidification from the casting mould to the crater end, to ensure the production of high quality cast product, e.g. in terms of minimisation of surface defects.

The reasons for caster breakout are many, thus making it more challenging to determine in all instances the root cause and thus to put measures in place to prevent a re-occurrence. The aim is to minimise significantly the likelihood of a breakout, as well as, surface defects, by determining the optimum casting conditions for the particular steel grade, to have appropriate on-line monitoring of strand solidification and real-time alarms to alert the caster operators to non-ideal casting conditions and thus make proactive decisions regarding the improvement of the casting conditions.

In this proposed collaborative project involving European Research Institutes and Steel Manufacturers the project objectives are to demonstrate that, by a combination of innovative measurement techniques monitoring the temperature distribution along the mould faces and the crater end position, with comprehensive model based monitoring and control of solidification, the secure production of prime continuously cast semi can be maximised and therefore the caster breakout avoided.

Coordinator

MATERIALS PROCESSING INSTITUTE

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>Mr David STAMP</td>
</tr>
</tbody>
</table>

Partners

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH

<table>
<thead>
<tr>
<th>Country</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>Dr Martin SCHLAUTMANN</td>
</tr>
</tbody>
</table>

SIDENOR INVESTIGACION Y DESARROLLOSA

<table>
<thead>
<tr>
<th>Country</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ES</td>
<td>Mr Xabier PEREDA</td>
</tr>
</tbody>
</table>

SWERA KIMAB AB

<table>
<thead>
<tr>
<th>Country</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>Dr Fatemeh SHAHBAZIAN</td>
</tr>
</tbody>
</table>

ESF ELBE-STahlWERKE FERALPI GMBH

<table>
<thead>
<tr>
<th>Country</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>Dr Dariusz SOSIN</td>
</tr>
</tbody>
</table>
800748 | MASTERINGROLLSII
---|---
Mastering work roll degradation II

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 1,631,738.35</td>
<td>Start Date</td>
<td>01/07/2018</td>
<td></td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 979,043.01</td>
<td>End date</td>
<td>31/12/2021</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

This proposal aims to integrate an enhanced mastering of work roll degradation in hot rolling by applying new measurement technologies and innovative actuators developed in previous RFCS and internal research projects.

Coordinator

CENTRE DE RECHERCHES METALLURGIQUES ASBL

BE | Mr Jurgen MALBRANCKE

Partners

SWEREA MEFOS AB

SE | Mrs Annika NILSSON

LISMAR ENGINEERING BV

NL | Mr Sander MUL

TATA STEEL IJMUIDEN BV

NL | Mr Danny BEENTJES

ARCELORMITTAL MAIZIERES RESEARCH SA

FR | Mr Thierno FALL

AKERS AB

SE | Mr Mats SÖDER
Synopsis of RFCS Projects 2018-2021

TGA2 Downstream steel processing

<table>
<thead>
<tr>
<th>800746</th>
<th>FASTLOROLL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast simulation tool for long product rolling</td>
<td></td>
</tr>
</tbody>
</table>

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (months)</td>
<td>48</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 1,337,800.60</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 802,680.36</td>
</tr>
</tbody>
</table>

Start Date

| 01/06/2018 |

End date

| 31/05/2022 |

Abstract

The finite element methods for the simulation of the hot rolling processes of long products have been subject of research over the last three decades: further developments are nowadays marginal and the technology has come to a mature condition: the reliability of the results is proven. The FE models of the hot rolling process have initially been applied for research purposes which permitted to gain a deep understanding of the rolling process: it is now time for a technology-oriented use of such models, which is based on a massive application of the simulation for an almost complete replacement of plant setup operation for the achievement of the target mechanical properties based on plant trials, which are expensive, time consuming and source of CO2 emissions. Moreover, the capability of predicting the effect of inclusions and pores on the final integrity of rolled products is a significant advantage, especially for those defects that cannot be avoided as consequence of the upstream process.

An optimized rolling setup can contribute to reduce scrap or product downgrade so as to reduce the cost per ton of produced steel by time and energy savings estimated in around 0.1%. Moreover, it would also allow reducing CO2 emissions related to the plant trials – on average, 1.8 tonnes of CO2 are emitted for every tonne of steel produced in Europe. According to the Metal Bulletin Research, in 2013 the iron and steel industry accounted for approximately 5% of total EU CO2 emissions. Massive simulations call for two main requirements of the simulation software: easy use and fast response, reliable results. Aim of FastLoRoll is the development of a fast simulation software for the analysis of multistage hot rolling processes of long products, that allows to calculate: material flow and obtained shape, temperature development, austenite deformation and decomposition, mechanical properties, inclusion and pore evolution under temperature and strain sequence.

Coordinator

RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA

Country

IT

Scientific person in charge

Dr Luigi LANGLELLOTTO

Partners

INSTYTUT METALURGII ZELAZA IM STANISLAWA STASZICA

PL

Prof Roman KUZIAK

O.R.I. MARTIN - ACCIAIERIA E FERRIERA DI BRESCIA SPA

IT

Mr Maurizio ZANFORLIN

TECHNISCHE UNIVERSITAT BERGAKADEMIE FREIBERG

DE

Mr Stefan MEILER

CMC POLAND SP ZOO

PL

Mr Zbigniew KUTYLA
Synopsis of RFCs Projects 2018-2021

TGA2 Downstream steel processing

800730 FLATBEND

DP1000 steel press bending holistic process chain improvement by novel control techniques and through thickness residual stress tailoring

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>EU Contribution</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Research</td>
<td>42</td>
<td>€ 1,775,183.80</td>
<td>01/04/2018</td>
<td>€ 1,066,310.28</td>
<td>30/09/2021</td>
</tr>
</tbody>
</table>

Abstract

The roll levelling process is responsible for providing suitable strips without shape defects and residual stresses coming from rolling processes. Normally, roll levellers ensure a flatness quality between 5-10 I-Units. However, for those materials to be cut, bent or welded in downstream processes, customers request greater flatness qualities to control the final springback, especially when using AHSS.

It is well known that material with a proper flatness tolerance can get a distortion during the subsequent processes. This distortion is caused by the inhomogeneous distribution of the stresses in the material and thus, an optimum material has to present a distributed and regular stress profile. However, the in-situ residual stress measurement of the processed material is industrially not viable with the existing techniques. Thus, the effect the residual stress variability has in the subsequent forming processes is difficult to study and still unknown.

FLATBEND industrial partners cover the whole steel process chain, starting with the steel producer and finishing with the automotive components stamper, a TIER1. Their large experience has allowed them to identify the current unsolved challenges for the processing of AHSS, which will be solved in the different Work Packages of this project.

The primary aim of the FLATBEND project is to optimize the existing DP980 processing lines for the production of defect free precuts by developing disruptive roll levelling techniques and to study the influence the precuts production process has in the press-bending process of automotive profiles. Additionally, and after understanding the relation between the incoming material condition and final springback of the components, the project will try to tailor the precuts properties by using an extra small dimension straightener before the final forming presses to create a robust and stable forming process that will reduce the manufacturing costs and the scrap amount.

Coordinator

FAGOR ARRASATE S COOP
ES
Mr Xabier ALDALUR

Partners

DATA M SHEET METAL SOLUTIONS GMBH
DE
Mr Albert SEDLMAIER

EKIDE SL
ES
Ms Ane MURUA

MONDRAGON GOI ESKOLA POLITEKNIKOA JOSE MARIA ARIZMENDIARRIETA S COOP
ES
Dr Lander GALDÓS

ARCELORMITTAL MAZIERES RESEARCH SA
FR
Dr Olivier MADELAINE - DUPUCH

FAURECIA SIÈGES D’AUTOMOBILE
FR
Mr Vincent RETAILLAUD
Synopsis of RFCS Projects 2018-2021

TGA2 Downstream steel processing

800679

RADIFLAT

Radar-based flatness measurement and control in strip rolling and processing lines

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 1,738,989.20</td>
<td>Start Date</td>
<td>01/06/2018</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,044,593.52</td>
<td>End date</td>
<td>31/05/2022</td>
</tr>
</tbody>
</table>

Abstract

The worldwide first radar-based strip flatness measurement system, including strip edge detection and width measurement is developed for strip processing lines (rolling, levelling, quenching, ...). The basic technology consists of a multi-radar measurement system that is created to operate with high frequency/resolution (240–300GHz) and precisely work under the extreme conditions of strip processing in terms of dust, vapour, high temperatures, etc.

Sophisticated signal processing and process modelling methods will be developed to integrate the measurement technology in the process control and automation. The measurement system will also be made compact even for small space in existing lines, and tested in pilot and industrial mills.

Coordinator

ASINCO GMBH

Country: DE

Scientific person in charge: Mr Fabian WITSCH

Partners

ARCELORMITTAL EISENHÜTTENTSTADT GMBH

Country: DE

Scientific person in charge: Mr Hagen KOTHE

COMTES FHT AS

Country: CZ

Scientific person in charge: Dr Zbyšek NOVÝ

FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.

Country: DE

Scientific person in charge: Mr Dirk NÜSSLER

ANTERAL SL

Country: ES

Scientific person in charge: Mr Gonzalo CRESPO LÓPEZ
800672 FLEXGAP

Industrial demonstration of novel adaptive flat bearing with adjustable thickness for flexible gap control in rolling mills

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Pilot&Demonstration</th>
<th>Duration (months)</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 704,699.75</td>
<td>Start Date</td>
<td>01/06/2018</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 352,349.86</td>
<td>End date</td>
<td>30/11/2022</td>
</tr>
</tbody>
</table>

Abstract

Increasing demands for better product quality, thinner strips and greater flexibility of the production lines confront rolling mills with new challenges. The e-mobility sector in particular requires thinner sheets with even tighter thickness tolerances to increase efficiency of electric motors. Therefore, it is necessary to reduce vibration level at the rolling stands. For this purpose, the adaptive flat bearing for rolling mills was developed, which enables passive and active vibration damping. This pilot and demonstration project will be the first industrial test of the adaptive flat bearing. Installation will be performed on a cold rolling mill of thyssenkrupp Electrical Steel.

Coordinator

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH
DE
Mr Moritz LOOS

Partners

THYSSENKRUPP ELECTRICAL STEEL GMBH
DE
Mr Dirk STEVENS

CORTS ENGINEERING GMBH & CO KG
DE
Mr Jochen CORTS

COMTES FHT AS
CZ
Dr Antonín PRANTL
Technical Group Steel 3

Conception of Steel Products

The scope TGA3 includes:

- Phase transformation, precipitation, re-crystallisation, microstructure & texture and ageing
- Predictive simulation models on microstructures & mechanical properties
- Development of steel with improved properties at low and high temperatures such as strength and toughness, corrosion, fatigue, wear, creep and resistance against fracture
- Steel products with improved physical properties including electromagnetic behaviour
- Innovative steel grades for demanding applications
- Coating development and coated steel products with appropriate surface characteristics (corrosion protection, damage control, other aspects)
- Standardisation of testing and evaluation methods
Synopsis of RFCS Projects 2018-2021

TGA3 Conception of steel products

<table>
<thead>
<tr>
<th>101034039</th>
<th>OPTIDMATOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Project</td>
<td>Research</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>42</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 1,810,997.75</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/07/2021</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 987,748.65</td>
</tr>
<tr>
<td>End date</td>
<td>31/12/2024</td>
</tr>
</tbody>
</table>

Abstract

This project investigates the applicability of the quenching and partitioning (QP) process to thick steel components, in which the microstructure developed by the steels is affected by the presence of thermal gradients during processing. The processing of thick components by the QP process would lead to microstructures containing retained austenite in a matrix of tempered martensite. The addition of retained austenite has the potential of leading to improved combinations of strength and toughness with respect to typical quenching and tempering components. Moreover, thermal gradients present during processing may lead to very interesting microstructural variations across thickness that needs to be explored. The QP processing has the additional advantage of being a shorter and less expensive heat treatment when compared to the quenching and tempering treatment.

This project considers components having an average diameter of 20-40 mm and a length of 300 mm, with a great range of applicability as tool parts for the construction sector.

The project objectives are:

1. To design a steel that, having the considered dimensions and after application of optimum QP processing, leads to Rm of 2000 MPa, yield stress greater than 1500 MPa while maintaining adequate toughness (elongation larger than 12-15%) and adequate tolerance to damage in terms of fracture toughness, fatigue response and wear.
2. To develop and validate a model for the microstructure development through thickness of large-section steel components. This model will allow the selection of optimum QP processing parameters in thick components different to the ones evaluated in this project.
3. To evaluate the industrial feasibility and life cycle assessment associated to the application of QP processing to thick components in comparison with typical quenching and tempering treatments.

Coordinator

UNIVERSITAT POLITECNICA DE CATALUNYSIDENOR INVESTIGACION Y DESARROLLOSA

Country	**Scientific person in charge**
ES | Prof José Maria CABRERA MARRERO

Partners

SIDENOR INVESTIGACION Y DESARROLLOSA

Country	**Scientific person in charge**
ES | Mr Jacinto Jose ALBARRÁN SANZ

FUNDACION IDONIAL

Country	**Scientific person in charge**
ES | Dr Jose Manuel ARTIMEZ

TECHNISCHE UNIVERSITEIT DELFT

Country	**Scientific person in charge**
NL | Prof Maria SANTOFIMIA

HILTI AKTIENGESELLSCHAFT

Country	**Scientific person in charge**
LI | Dr Michael BISCHOF
Synopsis of RFCS Projects 2018-2021

TGA3 Conception of steel products

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>101034041</td>
<td>AtHyCor</td>
<td>Modelling of hydrogen activity from atmospheric corrosion in ultra-high strength steels for light structure application</td>
</tr>
</tbody>
</table>

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>36</td>
<td>€ 1,906,026.05</td>
<td>01/07/2021</td>
<td>30/06/2024</td>
</tr>
<tr>
<td></td>
<td></td>
<td>€ 1,143,615.63</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Environmental assisted fracture of ultra-high strength steels under aggressive environment is a complex phenomenon that combines the complexity of both atmospheric corrosion and hydrogen embrittlement processes. The aim of this project is to develop a methodology based on advanced numerical models to predict and minimize such risks. Sets of new experimental data will be obtained at both local and global scales to link atmospheric corrosion mechanisms and hydrogen entry and diffusion into the steels. The different models will be coupled taking into account mechanical parameters to assess risks of brittle fracture based on local hydrogen concentration.

Coordinator

NSTITUT DE LA CORROSION SASU

Country FR

Scientific person in charge Dr Dominique THIERRY

Partners

RISE KIMAB AB

Country SE

Scientific person in charge Dr Johan TIDBLAD

ASSOCIACAO DO INSTITUTO SUPERIOR TECNICO PARA A INVESTIGACAO E DESENVOLVIMENTO

Country PT

Scientific person in charge Prof Fatima MONTEMOR

VYSOKA SKOLA CHEMICKO-TECHNOLOGICKA V PRAZE

Country CZ

Scientific person in charge Dr Tomas PROSEK

ARCELORMITTAL MAIZIERES RESEARCH SA

Country FR

Scientific person in charge Dr Christian ALLÉLY

VOESTALPINE STAHL GMBH

Country AT

Scientific person in charge Dr Gerald LUCKENEDER
Synopsis of RFCS Projects 2018-2021

TGA3 Conception of steel products

101034063

STeELS-EM

STabilized ELectrical Steels for Electric Mobility

<table>
<thead>
<tr>
<th>Info</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Project</td>
<td>Research</td>
<td>Duration (months)</td>
<td>42</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 1,804,508.80</td>
<td>Start Date</td>
<td>01/07/2021</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,082,705.28</td>
<td>End Date</td>
<td>31/12/2024</td>
</tr>
</tbody>
</table>

Abstract

Electric mobility is a central theme in the last years EC transport policies. To make possible the introduction of electric vehicles as mass mobility media for goods and people, efficiency of electric motors is one of the main points as it influences car autonomy, general efficiency of traveling, and above all, batteries consumption and CO2 emissions, which can be significantly reduced.

Magnetic characteristics of FeSi electrical steels, used in the core of electric machines, together with the machine design, greatly influences the electric motors efficiency.

Precipitates in particular are deleterious for the magnetic quality of electrical steels, as negatively interact with grain growth process, preventing the obtainment of optimal grain size, as well as directly interfering with magnetization processes.

The innovative project idea is to prevent fine precipitation developing an unconventional chemical composition of the alloy with unusual high concentration of Ti, V, Nb, (up to 0.1-0.2%). These elements can act as “scavengers” for N and C, main source of fine precipitation, capturing them in coarse precipitates which are believed to be less detrimental for the magnetic steel performances.

Ti, V, Nb are added in stainless steel to precipitate C and/or N and to avoid the precipitation of Cr carbides and/or carbonitrides, which deteriorates the steel corrosion resistance. They are also used in IF steels to precipitate C and/or N in Ti-Nb-V carbonitrides, preventing their presence in the lattice as interstitial elements, which deteriorate the draw-ability of the steel.

Even if the stabilization of steel by Ti, V, Nb, is used in the steel sector, it is rarely encountered in literature for electrical steels.

Optimizing chemical composition and processing conditions, precipitation can be drastically decreased and magnetic characteristics improved allowing European steel producers to obtain high quality steels for efficient electrical mobility in a competitive market.

Coordinator

RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA

Country

IT

Scientific person in charge

Dr Stefano CICALÈ

Partners

VOESTALPINE STAHL GMBH

AT

Mr Herbert KREUZER

UNIVERSITEIT GENT

BE

Prof Leo KESTENS

ONDERZOEKSCENTRUM VOOR AANWENDING VAN STAAL NV

BE

Dr Nikolas MAVRIKAKIS

RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN

DE

Prof Kay HAMEYER
Synopsis of RFCS Projects 2018-2021

TGA3 Conception of steel products

<table>
<thead>
<tr>
<th>Project Code</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>101034012</td>
<td>Development of New High Strength Austenitic Stainless Steels for Large Lightweight Storage Applications</td>
</tr>
</tbody>
</table>

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (months)</td>
<td>42</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 1,467,749.70</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/07/2021</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 880,649.82</td>
</tr>
<tr>
<td>End Date</td>
<td>31/12/2024</td>
</tr>
</tbody>
</table>

Abstract

Austenitic stainless steels possess good corrosion resistance, weldability, and high toughness at very low temperatures. However, their very low yield strength limits their use in large storage structures such as tanks for liquid hydrogen, water, biogas and the like. This project aims to address this issue by developing high strength and tough austenitic stainless steels, using the innovative concepts of thermomechanically controlled processing (TMCP). The use of TMCP will permit lightweighting in such storage structures and will promote the elimination of the solution annealing step in plate manufacture, both contributing to reduced carbon footprint as well as production and usage costs.

The above objectives (aims) are realised through the activities (work packages) i.e:

- WP1: Project Management and Dissemination
- WP2: Materials Design and Production
- WP3: Thermomechanical Processing (TMCP)
- WP4: Microstructure Characterisation
- WP5: Mechanical and Application Properties
- WP6: Industrial Implementation

The beneficiaries are:

1) CSM SPA (Industrial R and D organisation)
2) ACERINOX EUROPA (Stainless steel producer)
3) TU BAF (University)
4) OULUN YLIOPISTO (University)

The expected results will be new weldable austenitic stainless steels possessing high strength, good toughness, and adequate corrosion resistance. The developed TMCP plate steels will allow the "breakout" of austenitic stainless steels into the structural applications market. The steels will be suitable for a range of large scale storage structural applications i.e. cryogenic (LNG and LH2), as well as other applications (two from water, biogas and digesters).

A key result will be reduced carbon footprint due to the elimination of the solution annealing step in plate manufacture. Finally, the proposed applications also address climate change i.e. LH2 for the hydrogen economy.

The outputs are project deliverables (27), mid term and final project reports, website, symposium, and published research articles.

Coordinator

RINA CONSULTING - CENTRO SVILUPPO MATERIALE SPA
Country: IT
Scientific person in charge: Dr Ali SMITH

Partners

ACERINOX EUROPA SA
Country: ES
Scientific person in charge: Mrs Marta MURATORI

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG
Country: DE
Scientific person in charge: Prof Ulrich PRAHL

OULUN YLIOPISTO
Country: FI
Scientific person in charge: Prof Mahesh SOMANI
TGA3 Conception of steel products

899251 MARTBAIN

Innovative MARTensite-BAINite microstructures to provide industrially viable solutions to the need for high performance steel grades.

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Research</td>
<td>42</td>
<td>€ 1,993,641.00</td>
<td>01/10/2020</td>
<td>31/03/2024</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,196,184.60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

MARTBAIN will develop combinations of steel grades and process routes based on innovative, combined use of martensite and bainite reactions, and use these to overcome the current limitations of carbide free bainitic steels for two specific target applications.

In a first application, this combination will lead to the development of a 3rd generation high strength sheet with a process route compatible with existing continuous annealing or galvanizing lines.

In a second application, it will result in a significant improvement of performance and dramatic reduction of heat-treatment time for the manufacture of high-performance bearings or similar components.

Coordinator

ASCOMETAL FRANCE HOLDING SAS

Country FR **Scientific person in charge** Mr Thomas SOURMAIL

Partners

TECHNISCHE UNIVERSITEIT DELFT

NL Dr Stefan van BOHEMEN

AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

ES Dr Carlos GARCIA-MATEO

TATA STEEL NEDERLAND TECHNOLOGY BV

NL Dr Markus DINKEL

SCHAEFFLER TECHNOLOGIES AG & CO. KG

DE Dr Markus DINKEL
Synopsis of RFCS Projects 2018-2021

TGA3 Conception of steel products

Project: VForm-xSteels

Title: Toward virtual forming and design: Thermomechanical characterization of advanced high strength steels through full-field measurements and a single designed test

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (months)</td>
<td>48</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 2,521,389.20</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/07/2020</td>
</tr>
<tr>
<td>End date</td>
<td>30/06/2024</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,496,357.52</td>
</tr>
</tbody>
</table>

Abstract

Nowadays, the use of numerical simulation in general and particularly finite element analysis (FEA) has become a mandatory step of material processing optimization. Reliable virtual forming would lead to stiffer, stronger, safer and lighter steel parts through using advanced models. Simulation software uses complex material constitutive models and its success reproducing the real thermomechanical behaviour is inherently dependent on the quality of the model and related material parameters. However, today’s methods to characterize the materials through constitutive models, including damage, and their parameters are expensive and not robust.

The main goal of the project VForm-XSteels is to develop an efficient and accurate methodology for material characterization and determining the material parameters of thermomechanical models, from a dedicated single test that involve non-homogeneous temperature and strain fields. Indeed, this non-homogeneity leads to richer information than more traditional approaches with quasi-homogeneous tests, thus leading to a decrease of the number of experiments. A database and online library with calibrated material constitutive models, particularly for AHSS, is also developed.

The benefits of the proposed methodology and consequent implemented numerical tool developed within this project are (i) increasing the precision of numerical FEA simulations providing accurate input data, filling then a gap of the FEA market and answering to the request of the FEA users. Therefore, the (ii) reduction of engineering metal part development lead-time and the provision of robust solutions with highly improved quality is also a benefit. (iii) Developing an automatic, accurate and trustworthy methodology for model material characterization; (iv) reducing the number of experimental tests required to characterize metal forming materials; and (v) cost and time reduction in the overall development process are also benefits of this proposal.

Coordinator

UNIVERSIDADE DE AVEIRO

PT

Prof António ANDRADE-CAMPOS

Partners

UNIVERSITE DE BRETAGNE SUD

FR

Prof Sandrine THUILLIER

KATHOLIEKE UNIVERSITEIT LEUVEN

BE

Dr Sam COPPIETERS

UNIVERSITA POLITECNICA DELLE MARCHE

IT

Prof Marco ROSSI

MATCHID NV

BE

Dr Pascal LAVA

ONDERZOEKSCENTRUM VOOR AANWENDING VAN STAAL NV

BE

Dr Steven COOREMAN

DAF TRUCKS NV

NL

Dr Mark van DROGEN
TGA3 Conception of steel products

899268 MiPRE

Advanced metallurgical and micromechanical modelling to deploy the microstructural tailoring potential of press hardening

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 1,996,061.25</td>
<td>Start Date</td>
<td>01/07/2020</td>
<td></td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,197,636.75</td>
<td>End date</td>
<td>31/12/2023</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The use of new press hardening technologies in combination with high strength metallurgical concepts is known to be the best solution to produce lightweight components. However, an integrated intelligent manufacturing approach in the context of Industry 4.0 requires the digital transformation of the process allowing that every component and quality check is digitally documented. For that purpose, a complex and integrated material model that has to cover mechanical, thermal and metallurgical effects should be developed. MiPRE aims at improving the accuracy of metallurgical and mechanical modelling to predict material properties along measurable phase paths and progress in press hardening monitoring.

Coordinator

AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

Country

ES

Scientific person in charge

Dr Carlos CAPDEVILA MONTES

Partners

FUNDACIO EURECAT

Country

ES

Scientific person in charge

Dr Daniel CASELLAS PADRÓ

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS

Country

FR

Scientific person in charge

Prof Sebastien ALLAIN

LULEA TEKNISKA UNIVERSITET

Country

SE

Scientific person in charge

Dr Paul ÅLERSTRÖM

AUTOTECH ENGINEERING SL

Country

ES

Scientific person in charge

Mr Borja GONZÁLEZ

ARCELORMITTAL MAIZIERES RESEARCH SA

Country

FR

Scientific person in charge

Mr Sebastien COBO
Synopsis of RFCs Projects 2018-2021

TGA3 Conception of steel products

<table>
<thead>
<tr>
<th>Project Code</th>
<th>Description</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>899332</td>
<td>DELIGHTED</td>
<td>42</td>
<td>€ 2,174,767.95</td>
<td>01/07/2020</td>
<td>31/12/2023</td>
</tr>
</tbody>
</table>

Abstract

The main goal of the DELIGHTED project is to gain fundamental understanding of the principles of microstructural design for engineering of perspective austenitic Fe–Al–Mn–C lightweight steels to reach the combination of mechanical and performance properties suitable for industrial applications. The optimum thermo-mechanical processing route(s) will be developed for the selected grades. Evolution of microstructure during hot rolling and further annealing treatments will be thoroughly investigated. The main emphasis will be laid on the understanding kinetics of formation and growth of kappa-carbides, which play the key role in mechanical response and technological performance of these materials. Analytical models to predict their mechanical properties as a function of microstructure will be developed. The effect of microstructural features of the lightweight steels on technological properties (such as fracture toughness, fatigue resistance, weldability, etc.) will be analysed. A prototype of the mini-tractor cabin will be designed and produced using the developed lightweight steel for the critical parts, which have to undergo crash testing due to safety requirements. The crash test simulating the overturning of the mini-tractor will be performed. The deformation and the toughness performances of the critical parts will be estimated. The outcomes of the experiment will be compared with the results obtained earlier from testing similar prototypes made of other commercial AHSS.

Coordinator

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES</td>
<td>Dr Ilchat SABIROV</td>
</tr>
</tbody>
</table>

Partners

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>Dr Dirk PONGE</td>
</tr>
<tr>
<td>BE</td>
<td>Dr Xavier VEYS</td>
</tr>
<tr>
<td>BE</td>
<td>Prof Roumen PETROV</td>
</tr>
<tr>
<td>IT</td>
<td>Prof Carlo MAPELLI</td>
</tr>
</tbody>
</table>
TGA3 Conception of steel products

899335 HYDRO-REAL

Hydrogen Interaction with Retained Austenite Under Static and Cyclic Loading Conditions

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Research</td>
<td>42</td>
<td>€ 1,889,483.85</td>
<td>01/07/2020</td>
<td>31/12/2023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>€ 1,034,840.31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

This proposal addresses the sensitivity of ultra-high strength cold rolled steels to hydrogen embrittlement, which remains a hurdle for their large-scale introduction and resulting safer, environmentally-friendlier transport applications. It is focussed on the interplay of hydrogen with retained austenite under cyclic loading conditions. The project combines state-of-the-art characterization techniques with test setups that are as close as possible to reality. The underlying mechanisms will additionally be investigated, combining ab initio methods for the hydrogen uptake and release by the austenite with continuum simulations for hydrogen distribution in the microstructure.

Coordinator

MAX PLANCK INSTITUT FUR EISENFORSCHUNG GMBH

DE Dr Tilmann HICKEL

Country Scientific person in charge

Partners

THYSSENKRUPP STEEL EUROPE AG

DE Dr Richard THIESSEN

VOESTALPINE STAHL GMBH

AT Mr Klemens MRACZEK

ARCELORMITTAL MAIZIERES RESEARCH SA

FR Dr Thomas DIEUDONNE

AALTO KORKEAKOULUSAATIO SR

FI Prof Iikka VIRKKUNEN

MATERIALS CENTER LEOBEN FORSCHUNG GMBH

AT Dr Werner ECKER

HILTI AKTIENGESELLSCHAFT

LI Dr Michael BISCHOF
Crystal

Control of Risk for Hydrogen embrittlement in Steels for Automotive applications

<table>
<thead>
<tr>
<th>Info</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Project</td>
<td>Research</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>36</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 1,353,637.25</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/07/2020</td>
</tr>
<tr>
<td>End date</td>
<td>30/06/2023</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 812,182.35</td>
</tr>
</tbody>
</table>

Abstract

The main objective of CRYSTAL project is to reduce the hydrogen embrittlement risk in high strength steel parts for the automotive industry. The hydrogen content in representative AHSS, cold rolled and press hardening steels, will be examined along the global value chain from the various production stages up to vehicle component life. In this sense, a novel solid-state gas sensor will be set up to quantitatively measure in-situ the hydrogen absorbed during production of steel parts. Therefore, a non-destructive methodology to evaluate HE during production and life span of the components will be defined and tested during the project. The use of a hydrogen sensor probe directly after different manufacturing processes will give an extra tool to assure part quality and will easy its implementation in an Industry 4.0 approach.

On the other hand, a range of laboratory, real plant and simulated life tests will be carried out to find an optimal evaluation test method for hydrogen embrittlement susceptibility of steels. Interestingly, a novel test based on fracture mechanics will be set-up to quickly and reliably estimate the dependence of the material cracking resistance on hydrogen content. The effort in the understanding of hydrogen-uptake mechanisms, hydrogen threshold and hydrogen embrittlement index will help to elaborate future norms of production and testing, to produce safer vehicle components and to prepare for predictive behaviour.

At the end of CRYSTAL, a set of experimental tools and novel testing methodologies will be able to predict hydrogen embrittlement in production stages and assure steel/part quality. Their implementation and validation in CRYSTAL will definitively boost the applicability of advanced high strength steels in safety related automotive parts.

Coordinator
FUNDACIO EURECAT
ES Dr Silvia MOLAS

Partners
CENTRO RICERCHE FIAT SCPA
IT Dr Michele Maria TEDESCO
CENTRE DE RECHERCHES METALLURGIQUES ASBL
BE Dr Mélodie MANDY
ARCELORMITTAL MAIZIERES RESEARCH SA
FR Mr Thierry STUREL
VOESTALPINE STAHL GMBH
AT Dr Andreas MUHR
LETOVEC SRL
IT Mrs Linda BACCHI
Synopsis of RFCS Projects 2018-2021

TGA3 Conception of steel products

TGA3-001

Title: Dynaustab

Abstract:

The impact of retained austenite and its stability on the mechanical properties of new generation steels has been widely investigated in recent decades. However, specific knowledge is missing on the kinetics of austenite transformation under dynamic and especially triaxial loading conditions. This project aims at discovering the mechanisms both from a viewpoint of the microstructure as well as the strain conditions that govern the austenite behavior in severe conditions like crash and toughness applications. Through a combination of detailed characterization of carefully selected microstructure distributions with in situ measurement techniques and micro-mechanical modelling a clear link will be established within a specific strain rate range. Taking into account temperature dependence mostly at quasi-static level and triaxiality influencing austenite transformation near the fracture tip new insight will grow on improving material properties under these rigorous conditions.

Coordinator

CENTRE DE RECHERCHES METALLURGIQUES ASBL

Country: BE

Scientific person in charge: Mr Vincent PUTTERIE

Partners

- **ARCELORMITTAL MAIZIERES RESEARCH SA**
 Country: FR
 Scientific person in charge: Dr Kangying ZHU

- **AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS**
 Country: ES
 Scientific person in charge: Carlos GARCIA-MATEO

- **CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS**
 Country: FR
 Scientific person in charge: Prof Sebastien ALLAIN

- **TATA STEEL NEDERLAND TECHNOLOGY BV**
 Country: NL
 Scientific person in charge: Dr Radhakanta RANA

- **UNIVERSITEIT GENT**
 Country: BE
 Scientific person in charge: Prof Patricia VERLEYSEN
847229 BIOFIRE

Advanced Coated Steels for new demanding Biomass Firing environment having a high recycling behaviour and an improved service life

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (months)</td>
<td>48</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 2,026,655.95</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,215,993.57</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/06/2019</td>
</tr>
<tr>
<td>End date</td>
<td>31/05/2023</td>
</tr>
</tbody>
</table>

Abstract

In case of firing of opportunity fuels, common solutions applied to limit risks of tube failure caused by metal loss are lowering boiler operating conditions, therefore limiting conversion efficiency, or adopting advanced boiler materials, therefore rising boiler operating costs.

Currently to increase the corrosion resistance of the boiler tubes, new steel grades are developed and this imply a possible long term application due to the stringent need of certification of the new materials for the relevant application.

The application of protective coatings which increase the harsh environment durability of the tubes onto an existing steel (e.g. T22, T91) to increase the service life of the boiler tube, on the contrary, guarantees a short term application, due to the fact that the base material has well known performances.

The coating treatments developed in BIOFIRE will enhance the environmental resistance of the existing fully qualified steels commonly used for boiler tubes for their use in power generation systems firing opportunity fuels by adopting low cost and easy handling thermochemical methods potentially applicable at industrial scale. Coating solutions, available for both inner (steam side oxidation) and outer (fireside corrosion) tubes, will lead an improvement of the boiler performance, both by reducing the outage time and maintenance expenditure resources.

The goal of this project is the development of diffusion coating treatments, to be included in the industrial manufacturing process of steel components, in order to increase the life time of the tubes up to 2 times compared to un uncoated component and the prediction of the lifetime of the coated tubes.

The project starts from a TRL5 (technology validated in relevant environment due to the experiences of the partner Flame Spray) and will arrive at TRL7 (system prototype demonstration in operational environment).

Coordinator

RINA CONSULTING - CENTRO SVILUPO MATERIALI SPA

Country	Scientific person in charge
IT | Dr Roberta VALLE

Partners

FLAME SPRAY HUNGARY FEMIPARI SZOLGALTATO ES KERESKEDELMI KFT

HU | Andrea CHIERICHETTI

INSTYTUT METALURGII ZELAZA IM STANISLAWA STASZICA

PL | Dr Krzysztof RADWANSKI

FUNDACION TEKNIKER

ES | Mrs Elena FUENTES

BONO ENERGIA S.P.A.

IT | Dr Marco CARUGO

RWE POWER AG

DE | Mr Simon HECKMANN

ONDERZOEKSCENTRUM VOOR AANWENDING VAN STAAL NV

BE | Dr Serge CLAESSENS

SALZGITTER MANNESMANN PRÄZISROHR GMBH

DE | Dr Andreas MEISSNER
TGA3 Conception of steel products

847195 QPINOX

Development of New Martensitic Stainless Steels for Automotive Lightweight Structural Applications

<table>
<thead>
<tr>
<th>Info</th>
<th>Research</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 1,506,097.45</td>
<td>Start Date</td>
<td>01/06/2019</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 903,658.47</td>
<td>End date</td>
<td>30/11/2022</td>
</tr>
</tbody>
</table>

Abstract

This project aims to generate a new class of affordable martensitic stainless steels for the automotive sector. In detail, there are two main objectives. First, to develop new martensitic stainless steel grades containing retained austenite, using a combination of novel heat treatments (quenching and partitioning -QP) and steel chemistry optimisation, to give unique combinations of strength (>1200 MPa UTS) and ductility (total elongation more than 15%), suitable for lightweight automotive applications. The second main objective is to facilitate the industrial implementation (manufacture and use) of these new grades.

The first objective will be achieved by alloy and heat treatment design, first using models, and second via experiments, gradually scaling up from small heats with dilatometer heat treatment on small samples, to large heats followed by Gleeble heat treatment on larger hot rolled strips, and finally to lab pilot scale fully processed sheet production. At each iteration, the microstructure and mechanical properties will be assessed, in order to assist in optimization of properties in the final fully processed sheets. The second objective will be met by detailed experimental studies on critical automotive properties i.e. weldability, formability, fatigue, and corrosion. In addition, life cycle cost studies, component forming simulations, assessment of industrial processing windows, will be carried out with appropriate benchmarking to other steels, in order to assist in the industrial implementation of the developed steels. The project results are expected to benefit European stainless steel producers through the realisation of new and affordable martensitic stainless steel grades suitable for breakthrough into the lightweight automotive sector. In addition, the new grades are expected to offer attractive properties for other typical martensitic stainless steel applications such as those requiring improved corrosion and strength combinations.

Coordinator

RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA

Country Scientific person in charge

IT Dr Ali SMITH

Partners

CION IMDEA MATERIALES

ES Dr Ilchat SABIROV

TECHNISCHE UNIVERSITEIT DELFT

NL Prof Maria SANTOFIMIA

ACERINOX EUROPA SA

ES Mr Rafael SANCHEZ
847165

TGA3 Conception of steel products

<table>
<thead>
<tr>
<th>847165</th>
<th>INITIAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced implementation of novel corrosion resistant maraging steels with improved process robustness via tuned intermetallic nano-precipitation</td>
<td></td>
</tr>
</tbody>
</table>

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 1,969,999.00</td>
<td>Start Date</td>
<td>01/07/2019</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,181,999.40</td>
<td>End date</td>
<td>30/06/2023</td>
</tr>
</tbody>
</table>

Abstract

This project targets an implementation and development of corrosion resistant high strength maraging steels for two applications, i.e. a closed-die forged 1900MPa grade for aircraft landing gears for which process robustness is the bottleneck currently, and a breakthrough lean stress corrosion resistant 1400MPa steel for sour service.

These objectives will be realised via a combination of two industrial trials to evaluate improved processability and 3 waves of generic laboratory materials aiming at understanding the isolated effect of single elements and intermetallic phases (mainly Ni3Ti and NiAl).

Extended dilatometry and advanced high resolution characterisation techniques are key differentiators to obtain an in-depth insight in the precipitation of nano-sized intermetalics.

Coordinator

<table>
<thead>
<tr>
<th>ONDERZOEKSCENTRUM VOOR AANWENDING VAN STAAL NV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
</tr>
<tr>
<td>BE</td>
</tr>
</tbody>
</table>

Partners

AUBERT & DUVAL SAS

| **Country** | **Scientific person in charge** |
| FR | Denis Béchet |

LIEBHERR-AEROSPACE LINDENBERG GMBH

| DE | Sebastian ZIEHM |

MONTANUNIVERSITAET LEOBEN

| AT | Francisca MENENDEZ-MARTIN |

RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN

| DE | Prof Wolfgang BLECK |
Synopsis of RFCS Projects 2018-2021

TGA3 Conception of steel products

<table>
<thead>
<tr>
<th>CRASHTOUGH</th>
<th>Towards high crashworthiness parts through the investigation of microstructural effects on fracture toughness of 3rd generation AHSS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Info</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Project</td>
<td>Research</td>
<td>Duration (months)</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 1,896,937.25</td>
<td>Start Date</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,138,162.35</td>
<td>End date</td>
</tr>
</tbody>
</table>

Abstract

3rd Gen AHSS containing transformable retained austenite are excellent candidates for lightweight construction of high crashworthiness automotive parts. This is due to their complex microstructures with moderated retained austenite contents. Stress induced transformation of this retained austenite and the matrix characteristics affect both crack initiation and propagation.

Crash&Tough aims to investigate and better understand such microstructural effects to optimize crash resistance in 3rd Gen TRIP-aided steels. It will be assessed through fracture mechanics based tests, advanced characterization techniques and FE modelling to phenomenologically understand crack initiation and propagation in 3rd Gen AHSS and optimize their microstructure for high crashworthiness.

Coordinator

FUNDACIO CTM CENTRE TECNOLOGIC

Country	Scientific person in charge
ES | Mr David FRÔMETA

Partners

VOESTALPINE STAHL GMBH

Country	Scientific person in charge
AT | Mr Clemens SUPPAN

ARCELORMITTAL MAIZIERES RESEARCH SA

FR | Dr Thomas DIEUDONNÉ

CENTRO RICERCHE FIAT SCPA

IT | Dr Daniele PULLINI

LULEA TEKNISKA UNIVERSITET

SE | Dr Jörgen Kajberg
Technical Group Steel 4

Steel applications and solutions for existing and new markets

The scope TGA4 includes:

- Technologies relating to the transformation of steel products: cutting, forming, welding and other assembling technologies of steel products (and other materials)
- Structural safety and design methods, in particular with regard to resistance to fire and earthquakes
- Design of assembled structures to facilitate the easy recovery of steel scrap and its re-conversion into usable steels and techniques for recycling
- Steel-containing composites and sandwich structures
- Prolonging service life of steel based assemblies
- Innovative steel applications for emerging markets
- Innovative steel solutions for automobiles, packaging and home appliances
- Innovative steel solutions for building, construction, energy production and industry
- Life cycle assessment of sustainable steel applications
TGA4 Steel applications and solutions for existing and new markets

101034069 WINDUCTION

Eco-design of an alternative production route for planet gears of wind turbine gearboxes

<table>
<thead>
<tr>
<th>Info</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Project</td>
<td>Research</td>
<td>Duration (months)</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 2,547,798.70</td>
<td>Start Date</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,528,679.22</td>
<td>End date</td>
</tr>
</tbody>
</table>

Abstract

To increase the power, the wind turbines size is continuously augmenting. Consequently, gears of wind turbine gearboxes are subjected to higher stresses mainly applied on the teeth surface. To reach the properties required to guarantee a safe functioning, these components are surface hardened through a very long carburizing process, known for being a very pollutant (large consumption of energy obtained from fossil fuels, CO2 emissions...) which represents a big contradiction with the green character of the wind energy.

The main aim of WINDUCTION the design of a 100% ecofriendly and low-energy consuming production route for the planet gears of the wind turbine gearboxes. The development of this innovative production route (based in the replacement of carburizing by induction hardening) is expected to lead to the following benefits: huge reduction of CO2 emissions, drastic reduction of the energy consumption (avoiding the use of fossil fuels) and utilization of novel ecofriendly steels designed to improve their performance during the machining operations.

In the first part of the project, different steels will be induction hardened in a specifically designed equipment in order to choose the steel leading to the best surface properties and fatigue performance. Once selected the most adequate steel, the demonstrator component (planet gears) will be produced and induction hardened in an induction system fabricated ad-hoc for that purpose.

The proposed surface hardening process will be compared with the reference carburizing in terms of environmental impact, productivity, production costs and gears performance.

Although the project is focused on gears of wind turbines, the obtained results may be easily extrapolated to other large components that must be surface hardened. At the end of the project, some guidelines will be prepared to facilitate the industrial implementation of the evaluated solution and to state the basis for induction hardening even larger gears.

Coordinator

SIDENOR INVESTIGACION Y DESARROLLOSA

Country	Scientific person in charge
ES | Dr Diego HERRERO VILLALIBRE

Partners

OVAKO SWEDEN AB

Country	Scientific person in charge
SE | Dr Thomas BJORK

ZF WIND POWER ANTWERPEN NV

Country	Scientific person in charge
BE | Mrs Sonja GORIS

LEIBNIZ-INSTITUT FUR WERKSTOFFORIENTIERTE TECHNOLOGIEN-IWT

Country	Scientific person in charge
DE | Dr Matthias STEINBACHER

INDUCTOHEAT EUROPE GMBH

Country	Scientific person in charge
DE | Mr Daniel ALLMENDINGER

RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN

Country	Scientific person in charge
DE | Dr Jens BRIMMERS
Abstract

The EU aims for reducing automotive emissions by 30-40% by 2030 which is mainly achieved by lightweight, electrification and fuel efficiency approaches. The steel industry responded by developing advanced-high strength (AHSS), press hardening steels (PHS) and enhanced machinability steels. AHSS and PHS combined with Al cast nodes and Al-extrusions have grown in bodywork to reduce weight, improve performance and safety. The successful joining of enhanced machinability steels in ICE engines promotes fuel efficiency.

Stir4Steel will provide efficient, environmental-friendly and cost-effective methodologies to join these materials. It will enable multi-material designs for battery trays, shock towers/front rails, B-pillars and monoblock pistons, leading to weight-optimized components, energy efficiency and lower CO2 footprint.

The global project aim described will be reached through the achievement of the following technical objectives:

- Objective 1: To develop Friction Stir Welding (FSW) and refill Friction Stir Spot Welding (RFSSW) based joining solutions for Steel/Al joints with AHSS and PHS;
- Objective 2: To advance the FSW technology to weld enhanced-machinability steel grades components.
- Objective 3: To model the mechanical performance of FS-welded Steel/Al joints and high-machinability steel grades;
- Objective 4: To produce and test 4 steel-optimised, multi-material demonstrator car parts;
- Objective 5: To simulate the industrialisation process for assembly using such new joining techniques;
- Objective 6: To identify cost and environmental elements which influence the vehicle with a systematic LCA.

Led by a tip-of-the-spear consortium consisting of steel producers, car manufacturers, FSW joining technologists, and innovation experts, Stir4Steel aims to pave the way for more sustainable applications and higher penetration of advanced steel grades in the automotive as well as aviation, trains and shipbuilding sectors.

Coordinator

STIRTEC GMBH

Country: AT

Scientific person in charge: Dr Thomas e WEINBERGER

Partners

SIDENOR INVESTIGACION Y DESARROLLOSA

Country: ES

Scientific person in charge: Ms Zurine IDOYAG

I2M UNTERNEHMENSENTWICKLUNG GMBH

Country: AT

Scientific person in charge: Dr Ilaria TORQUATI

CENTRO RICERCHE FIAT SCPA

Country: IT

Scientific person in charge: Dr Daniele PULLINI

HELMHOLTZ-ZENTRUM GEESTHACHT ZENTRUM FUR MATERIAL- UND KUSTENFORSCHUNG GMBH

Country: DE

Scientific person in charge: Prof Benjamin KLUSEMANN

ARITEX CADING, S.A.

Country: ES

Scientific person in charge: Mr Alex MATEU
Synopsis of RFCS Projects 2018-2021

TGA4 Steel applications and solutions for existing and new markets

<table>
<thead>
<tr>
<th>101033984</th>
<th>InCSEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovative ultra-low Carbon building Steel Envelop systems with Bio-based insulation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 2,493,436.60</td>
<td>Start Date</td>
<td>01/08/2021</td>
<td></td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,496,061.96</td>
<td>End date</td>
<td>31/07/2025</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The strategic objective of the “Innovative Ultra-low Carbon Building Steel Envelop systems with Bio-based Insulation (InCSEB)” project is to develop five innovative ultra-low carbon building steel envelop systems thanks to the innovative use of wood fiber, a renewable and bio-sourced insulation material, while achieving a high level of thermal performance and ensuring compliance with other requirements such as mechanical, fire and acoustic.

The projected Global Warming Potential (GWP) gain of these innovative systems is likely to exceed 60% compared to conventional systems for a comparable thermal performance. The five systems studied, which have all been selected because of their market reach in the European Union, include three sandwich panels systems (pitch and flat roofing and cladding), one double skin system and one facade cladding (cassette). A detailed experimental, analytical and interpretation programme based on relevant classification reports has been designed for each of these systems with a series of tests to evaluate their mechanical, thermal, fire, acoustic performances together with their air, water, and vapour permeability. Two full scale prototypes will be built incorporating the new systems to evaluate their behaviour and durability when exposed to the real-life. The indicators of life cycle assessment (LCA) for the systems studied will be calculated and the benefits in terms of carbon footprint (GWP) will be evaluated by comparing the current situation of a steel office building in France with that of the same building should it had been fitted originally with the five new steel envelops. Five generic BIM objects will be produced. Three draft amendments will be prepared and submitted to CEN. The industrial partners intend to submit four patents to the European Patent Office. The partners have also planned to carry out a strong activity of dissemination of the innovative solutions to stakeholders across the European Union (publications, workshop).

Coordinator

L’ENVELOPPE METALLIQUE DU BATIMENT

Country

FR

Scientific person in charge

Mrs Valérie PRUDOR

Partners

JORIS IDE

BE

Dr Thibault RENAUX

TATA STEEL FRANCE BÂTIMENTS ET SYSTÈMES SAS

FR

Mr Alexis BRUTIN

FUNDACION TECNALIA RESEARCH & INNOVATION

ES

Ms Aintzina MACAZAGA

TECHNISCHE UNIVERSITAT DARMSTADT

DE

Prof Jorg LANG

UNIVERSIDADE DE COIMBRA

PT

Prof Luis SIMÕES DA SILVA
Synopsis of RFCS Projects 2018-2021

TGA4 Steel applications and solutions for existing and new markets

101033989 TOPGEAR

Gears with top in-service performance developed for hybrid and electric vehicles

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 1,949,408.70</td>
<td>Start Date</td>
<td>01/08/2021</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,169,645.22</td>
<td>End date</td>
<td>31/01/2025</td>
</tr>
</tbody>
</table>

Abstract

The stringent CO2 emissions targets are boosting the sales of hybrid (HEV) and electric vehicles (EV). In a near future, the gears rotating speed of these vehicles is expected to triple the one of conventional internal combustion cars, reaching 15,000 rpm, maintaining at the same time actual torque. However, gears produced with conventional steel and process are not able to withstand the demanding conditions of these gears for future HEV/EV (fatigue and other failure types typical of high speeds, i.e. scuffing, will drastically increase). Accordingly, a new production route to manufacture this new generation gears is required.

In order to offer a solution to this demand, the main aim of TOPGEAR project is the development of new production routes (combining novel steels and surface hardening techniques), leading to gears with top in-service performance, able to support the working conditions of future HEV/EV.

The properties obtained after surface hardening (through different innovative techniques) different steels will be compared with those attained in the conventional process. Along the project, the gears manufacturing process will be assessed at laboratory scale. Finally, the most suitable combination of steel and surface treatment will be chosen to produce gears. These components will be tested at very high speeds in one of the few machines in the World capable of reaching rotating speeds of 15,000 rpm. These tests will allow to verify that the performance of the gears produced through the proposed manufacturing routes fulfil the requirements of future HEV/EV.

Although the TOPGEAR project is focused on gears to be used in HEV/EV, the obtained results may be easily extrapolated to any other gear which works at high rotating speeds or to any other component which requires to improve its surface properties.

At the end of the project, an integral LCA and some guidelines to facilitate the industrial implementation of the studied solution will be performed.

Coordinator

SIDENOR INVESTIGACION Y DESARROLLOSA

Country: ES
Scientific person in charge: Mr Roberto ELVIRA EGUIZABAL

Partners

CENTRO RICERCHE FIAT SCPA

Country: IT
Scientific person in charge: Dr Eva BUTANO

ALD VACUUM TECHNOLOGIES GMBH

Country: DE
Scientific person in charge: Dr Volker HEUER

RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN

Country: DE
Scientific person in charge: Dr Jens BRIMMERS

2M UNTERNEHMENSENTWICKLUNG GmbH

Country: AT
Scientific person in charge: Dr Aldo OFENHEIMER
Synopsis of RFCS Projects 2018-2021

TGA4 Steel applications and solutions for existing and new markets

101034015 DREAMERS

Design REsearch, implementation And Monitoring of Emerging technologies for a new generation of Resilient Steel buildings

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Pilot&Demonstration</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 3,787,019.90</td>
<td>Start Date</td>
<td>01/07/2021</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,893,509.95</td>
<td>End date</td>
<td>31/12/2024</td>
</tr>
</tbody>
</table>

Abstract

The project FREEDAM (RF5R-CT-2015-00022), recently accomplished, regarded the design and testing of innovative connections equipped with friction dampers able to withstand without any damage destructive seismic events. FREEDAM connections exhibited excellent performances as demonstrated by experimental tests on beam-to-column connections and by full-scale seismic test on a two-storey steel building carried out through the pseudo-dynamic testing method in a laboratory environment.

The DREAMERS demonstration project aims to show the applicability and the increased performance obtained through the application of the innovative FREEDAM connections in a real scale environment. The objective is the construction of an 800 sqm resilient steel building in the Campus of the University of Salerno already included in the public plan of investments. Starting from the preliminary design, already available, the proposed demonstration project will have a significant focus on the structural part, but the architectural components and the mechanical/electrical systems will also be designed considering the most advanced available standards.

The structure will be constituted by seismic resilient moment-resisting steel frames whose beam-to-column joints are equipped with FREEDAM friction dampers. The non-structural elements will be conceived considering the damage issues, adopting partition walls, false ceilings, and façades able to follow the structural horizontal displacements without damage. The mechanical/electrical systems and the claddings will also be designed considering the targets fixed by the LEED construction and building protocol. The building will be part of the new technological district of the University of Salerno. The new building belongs to the construction program planned for the next three years. It will be erected according to the public plan of investments starting from 2023. BIM methodologies will be adopted to reduce critical risks for the project.

Coordinator

UNIVERSITA DEGLI STUDI DI SALERNO

IT Prof Vincenzo PILUSO

Partners

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II

IT Prof Raffaele LANDOLDO

UNIVERSITE DE LIEGE

BE Prof Jean-Pierre JASPART

UNIVERSIDADE DE COIMBRA

PT Prof Luis Simoes DA SILVA

ARCELORMITTAL BELVAL & DIFFERDANGE SA

LU Dr Renata OBIALA

KNAUF DI LOTHAR KNAUF SAS

IT Mr Marco GAROFALO
Synopsis of RFCS Projects 2018-2021

TGA4 Steel applications and solutions for existing and new markets

<table>
<thead>
<tr>
<th>101034036</th>
<th>ToughSteel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture toughness as a tool to address cracking problems in forming and in-service performance of AHSS. Valorisation and dissemination</td>
<td></td>
</tr>
</tbody>
</table>

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Accompanying measures</th>
<th>Duration (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 989,998.25</td>
<td>Start Date 01/07/2021</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 989,998.25</td>
<td>End date 30/06/2023</td>
</tr>
</tbody>
</table>

Abstract

ToughSteel aims to enhance the value and increase stakeholder awareness of Fracture Toughness Approach benefits, which has proved to be an effective tool to address crack-related challenges in AHSS in car lightweighting and has high replicability in other sheet metal forming applications. ToughSteel pretends to disseminate to the main actors of the sheet metal forming community, the possibility of measuring fracture toughness in thin sheets by means of the essential work of fracture (EWF) and use it to effectively address crack related phenomena, as stretch-flangeability and impact performance. A wide audience including academic institutions, steel producers, part-makers, and end-users of sheet metal products will be reached. This main objective will be attained through the accomplishment of the following tasks:

- Collection, organization and analysis of the fracture toughness data measurements (from previous RFCS projects and open literature) to create a database.
- Elaboration of an industrial guideline to describe methodologies of fracture toughness evaluations in sheet metals.
- Communication activities to promote the application of fracture toughness as a design material property, as the creation of a website with free access to the users (in 6 languages), the creation of a LinkedIn and a You-tube channel to make available the project videos.
- Organization of 5 online webinars, 11 academic and industrial workshops, 2 online courses and dissemination by educational programs.
- Standardization activities to facilitate the acceptance and utilization by the market of the developed solutions.
- Dissemination activities in EU: Open Days, participation in key industrial events, one-to-one meetings, creation of a White Paper and EU clustering and networking activities.
- Organization of innovative “Problems Solving” workshops focused on case-studies to show how fracture toughness can be used to understand and solve crack-related industrial problems.

Coordinator

Country

<table>
<thead>
<tr>
<th>Coordinator</th>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNDACIO EURECA</td>
<td>ES</td>
<td>Dr Begoña CASAS</td>
</tr>
</tbody>
</table>

Partners

<table>
<thead>
<tr>
<th>Country</th>
<th>Contact Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>Prof Pâr JONSEN</td>
</tr>
<tr>
<td>BE</td>
<td>Prof Thomas PARDOEN</td>
</tr>
<tr>
<td>IT</td>
<td>Prof Daniele PULLINI</td>
</tr>
<tr>
<td>ES</td>
<td>Mr Fernando UTRIL</td>
</tr>
<tr>
<td>SE</td>
<td>Mrs Rachel PETTERSON</td>
</tr>
<tr>
<td>ES</td>
<td>Mr Roberto CASTELO</td>
</tr>
<tr>
<td>IT</td>
<td>Dr Federica BASSAN</td>
</tr>
</tbody>
</table>
Synopsis of RFCS Projects 2018-2021

TGA4 Steel applications and solutions for existing and new markets

<table>
<thead>
<tr>
<th>Project ID</th>
<th>LASTTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASer cutting Technology for Tubular Structures</td>
<td></td>
</tr>
</tbody>
</table>

Info
- **Type of Project**: Research
- **Duration (months)**: 42
- **Total Budget**: € 2,941,074.30
- **Start Date**: 01/08/2021
- **EU Contribution**: € 1,764,644.58
- **End Date**: 31/01/2025

Abstract

The previous EU-RFCS LASTEICON 709807 project showed that joint configurations fabricated using laser cutting technology (LCT) were superior in terms of resistance and stiffness from the tubular joint options obtained by conventional manufacturing techniques (directly welded, through diaphragm, external diaphragm and open section). This superior performance also resulted in a major potential of lowering the fabrications costs and environmental impact in both low and high seismicity regions. In the conclusion of the previous LASTEICON project, it was mentioned that, to achieve an increased readiness levels for market penetration, some topics need further studies such as experimental performance of the joints related to the low cycle fatigue, experimental fire performance, more challenging architectural geometries, rectangular hollow sections, vertical splicing of columns, capacity under compression, frame corner nodes, local behaviour around the welded joints, further automatization and robotization as well as minimization of welding in the joints.

In the LASTTS project, tubular structures will be designed using LCT joints with different configurations, their key components will be tested, and parametric analyses will be performed at local and global levels. With this large database of research, design guidelines and worked examples will be produced and disseminated for a major market penetration of innovative steel tubular applications into the EU construction sector. The final impact will be to let engineers and architects exploit the outstanding structural and architectural properties of steel hollow sections in the future building projects.

Coordinator
- **POLITECNICO DI MILANO**
- **Country**: IT
- **Scientific person in charge**: Prof Carlo Andrea CASTIGLIONI

Partners
- **UNIVERSITA DI PISA**
- **Country**: IT
- **Scientific person in charge**: Dr Francesco MORELLI
- **INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE RENNES**
- **Country**: FR
- **Scientific person in charge**: Prof Mohammed HIJAJ
- **INSTITUTO SUPERIOR TECNICO**
- **Country**: PT
- **Scientific person in charge**: Prof Luis CALADO
- **RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN**
- **Country**: DE
- **Scientific person in charge**: Prof Benno HOFFMEISTER
- **UNIVERSITEIT HASSELT**
- **Country**: BE
- **Scientific person in charge**: Prof Herve DEGEE
- **CENTRE TECHNIQUE INDUSTRIEL DE LA CONSTRUCTION METALLIQUE**
- **Country**: FR
- **Scientific person in charge**: Dr Christophe THAUVYOYE
- **GRID INTERNATIONAL CONSULTING ENGINEERS SA**
- **Country**: PT
- **Scientific person in charge**: José PEDRO
- **BUREAU D’ETUDES GREISCH SOCIETE INTERPROFESSIONNELLE D’INGENIEURS ET D’ARCHITECTES SA* BEG**
- **Country**: BE
- **Scientific person in charge**: Dr Yves DUCHENE
- **GREGULL UND SPANG INGENIEURGESELLSCHAFT FÜR STAHLBAU MBH**
- **Country**: DE
- **Scientific person in charge**: Mr Marian KEMPKES
- **ADIGE-SYS SPA**
- **Country**: IT
- **Scientific person in charge**: Mr Alberto VALLI
- **MOVISID SPA**
- **Country**: IT
- **Scientific person in charge**: Mr Name NAPOLANO
- **BRIAND CM**
- **Country**: FR
- **Scientific person in charge**: Dr Nicolas HENNETON
- **VALLOUREC DEUTSCHLAND GMBH**
- **Country**: DE
- **Scientific person in charge**: Mr Ralf HOJDA
- **ARCELORMITTAL TUBULAR PRODUCTS LEXY**
- **Country**: FR
- **Scientific person in charge**: Mr Sylvain SANTRISSE
Synopsis of RFCS Projects 2018-2021

TGA4 Steel applications and solutions for existing and new markets

101034083

FISHWALL

Fire and Seismic performances of Hybrid fire WALLs in case of single-storey industrial and commercial steel buildings

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 1,370,859.65</td>
<td></td>
<td>Start Date</td>
<td>01/08/2021</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 822,515.79</td>
<td></td>
<td>End date</td>
<td>31/01/2025</td>
</tr>
</tbody>
</table>

Abstract

Fire walls are commonly employed inside single-storey buildings, and if the structures are in steel they can be left unprotected. However, questions are being very often raised in Europe about the appropriateness of widely used fire wall solutions with unprotected steel structures, which have also to comply with seismic safety requirement if they are used in seismic areas.

The current project aims to overcome the present lack of knowledge, through both experimental and numerical investigations and to develop an innovative hybrid steel-based fire wall solution using sandwich panels for single-storey buildings with unprotected steel structures as well as design guidance.

Coordinator

CENTRE TECHNIQUE INDUSTRIEL DE LA CONSTRUCTION METALLIQUE

FR Dr Christophe RENAUD

Partners

UNIVERSITA DEGLI STUDI DI TRENTO

IT Dr Nicola TONDINI

CESKE VYSOKE UCENI TECHNICKE V PRAZE

CZ Prof Frantisek WALD

JORIS IDE

BE Mr Fábio DAMÁSIO

BRIAND CM

FR Dr Nicolas HENNETON

PAVUS, AS

CZ Mr Jaroslav DUFEK

L’ENVELOPPE METALLIQUE DU BATIMENT

FR Mrs Valérie PRUDOR

EFFECTIS FRANCE

FR Mr Régis KORYLUC
FIRST-WIRE

Fiber Reinforced STEel WIREs for high performance lightweight ropes and cables operating in demanding scenarios

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 1,888,414.19</td>
<td>Start Date</td>
<td>01/06/2020</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,133,046.09</td>
<td>End date</td>
<td>31/05/2023</td>
</tr>
</tbody>
</table>

Abstract

FIRST-WIRE (Fiber Reinforced STEel WIRE) project aims at developing a lightweight steel based wire to be used for ropes and cables for a wide range of industrial and civil where high performance over weight ratio plays a decisive role and the recourse to traditional full steel wire is unfeasible due to the excessive selfweight and/or the unsatisfactory structural performances. The proposed wire concept represents a breakthrough innovation consisting of a stainless steel wire internally reinforced with high strength/modulus carbon fibers. It combines the low weight and high mechanical performance of the fibers with the good behavior of the steel in terms of corrosion resistance, abrasion and ductility.

FIRST-WIRE promotes the use of steel-based products in a market where full-composite and full-synthetic products are currently becoming very competitive. The project will consist of a wide research to prove the product performance through extensive small-scale and large-scale experimental activities, numerical simulations and case studies analysis. Among these latter, the following scenarios are selected: running ropes for off-shore ultra deep water lifting operations, mooring lines for floating platforms for wind turbines in deep water, structural cables for suspension, stayed and arch bridges.

Objectives of the proposal are summarized as follows:

1. optimization of wire design;
2. optimization of wire manufacturing process;
3. small-scale on wires and large-scale testing on ropes and cables;
4. case studies analysis to highlight the potential benefits in demanding scenarios including industrial, civil and infrastructural applications;
5. development of design guidelines for the adoption of the innovative wire and proposal for amendments and integration in existing European/International standards and recommendations.

Coordinator

ASTARTE STRATEGIES SRL

Country

IT

Scientific person in charge

Mr Andrea MELEDDU

Partners

REDAELLI TECNA S.P.A.

IT

Mr Maurizio MELEDDU

NATIONAL TECHNICAL UNIVERSITY OF ATHENS - NTUA

GR

Prof Spyros MAVRAKOS

UNIVERSITA DEGLI STUDI DI PADOVA

IT

Dr Katya BRUNELLI

UNIVERSITA DEGLI STUDI ROMA TRE

IT

Dr Fabrizio PAOLACCI

UNIVERSITAET STUTTGART

DE

Mr Gregor NOVAK

KME GERMANY GMBH & CO KG

DE

Dr Peter BÖHLKE

IHC MTI BV

NL

Mr Hans GREVE
TGA4 Steel applications and solutions for existing and new markets

899321
FREEDAM PLUS
Valorisation of knowledge for FREE from DAMAge steel connections

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Accompanying measures</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info</td>
<td></td>
<td>24</td>
<td>€ 1,330,638.20</td>
<td>01/07/2020</td>
<td>30/06/2022</td>
</tr>
</tbody>
</table>

Abstract
The main goal of the recently accomplished RFCS research project FREEDAM (RFSR-CT-2015-00022) has been the development of beam-to-column connections able to withstand destructive seismic events without any damage to the steel components. This project has raised the problem of the seismic protection of buildings with a focus on the sustainability issues, proposing a resilient and FREE from DAMAge solution. The added value of the FREEDAM project to what has already been achieved at both European and worldwide level is significant. The project has led to the development of an innovative solution able to increase the safety of buildings and to reduce the direct and indirect costs related to the development of structural damage in case of rare seismic events or exceptional loads.

This proposal aims at the valorisation and the dissemination of the results achieved within the FREEDAM project. Given the importance of the outcomes raised up from FREEDAM Project, design-oriented documents (guidelines, handbook, tools and design examples) will be produced in 13 different languages, and distributed among the partners of steel construction sectors, including all academic institutions, engineers and construction companies. Moreover, workshops and seminars will be organized all over Europe, in USA and in New Zealand for presenting material, and sharing knowledge.

The current proposal is conceived in response to the need of the steel construction sector and practice in Europe for simple design tools for friction beam-to-column joints for seismic applications. With this regard, the widespread distribution of the design handbook and codified design procedures plays a key role in overcoming the intrinsic limitations of design assisted by tests in terms of both time and economical efforts and in providing reliable standard joints that can be easily used by designers.

Coordinator
UNIVERSITA DEGLI STUDI DI SALERNO
IT
Prof Vincenzo PILUSO

Partners
UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II
IT
Prof Raffele LANDOLFO

UNIVERSITE DE LIEGE
BE
Prof Jean-Pierre JASPART

UNIVERSIDADE DE COIMBRA
PT
Prof Luis DA SILVA

UNIVERSITATEA POLITIEHNICA TIMISOARA
RO
Prof Dan DUBINA

CONVENTION EUROPEENNE DE LA CONSTRUCTION METALLIQUE ASBL
BE
Ms Véronique DEHAN

OZYEGIN UNIVERSITESI
TR
Prof Gulay ALTAY

NATIONAL TECHNICAL UNIVERSITY OF ATHENS - NTUA
GR
Prof Ioannis VAYAS

CESKE VYSOKE UCENI TECHNIEC V PRAZE
CZ
Prof Frantisek WALD

INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE RENNES
FR
Prof Mohammed HIJAJ

TECHNISCHE UNIVERSITEIT DELFT
NL
Prof Milan VELJKOVIC

UNIVERZA V LJUBLJANI
SI
Prof Primož MOZE

UNIVERSITET PO ARCHITEKTURA STROITELSTVO I GEODEZIJA
BG
Dr Nick RANGELOV

UNIVERSITAT POLITECNICA DE CATALUNYA
ES
Prof Enrique MIRAMBELL

RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
DE
Prof Benno HOFFMEISTER
Synopsis of RFCS Projects 2018-2021

TGA4 Steel applications and solutions for existing and new markets

<table>
<thead>
<tr>
<th>899331</th>
<th>IntellCutProcess</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info</td>
<td>Synopsis</td>
</tr>
<tr>
<td>Type of Project</td>
<td>Research</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>42</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 1,712,906.65</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/07/2020</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,027,743.99</td>
</tr>
<tr>
<td>End date</td>
<td>31/12/2023</td>
</tr>
</tbody>
</table>

Abstract

The amount of high strength steel grades in the automotive industry has been increasing because of higher safety demands in the context with energy savings and CO2-reduction connected with the demand on light weight car body constructions. The consequences are increasing wear problems at cutting tools in the finishing departments of the European steel industry and other steel processing fields, especially the automotive industry.

The project IntellCutProcess will investigate two prevalent technologies in the field sheet metal cutting: (1) the punching as well as (2) the shearing of steel sheet. The objectives of IntellCutProcess shall be achieved by means of a holistic approach comprising the investigation/measurement of the tool wear, the influenced process parameters (cutting force, die clearance, shear angle, etc.), the optimisation of tool (material and wear protective coating), the development of sensor-equipped (intelligent) tools and the development of a predictive wear warning system.

The project objectives will be achieved by developing a multi-component solution with a wear predictive strategy consisting of:
- a wear warning system
 - optical analysis tool (cut edge evaluation),
 - measurements and analysis of important process parameters,
 - software tool for wear prediction,
- the use of adapted tool material and functional wear protective coatings,
- the use of an optimised surface topography of the tools
- the adaptation of tool geometries and process conditions.
- the modelling of punching and shearing processes

The following technical and economic advantages can be expected:
- Increased tool lifetime and thus reduced tool costs,
- Reduction of production waste due to poor cut edge quality,
- Reduction of press line downtime due to tool breakage
- Optimisation of maintenance intervals through condition-based maintenance,
- Increase of product quality,
- Improvement of process understanding.

Coordinator

VDEH-BETRIEBSFORSCHUNGSGEBRÜDER MBH

DE Dr Delphine RECHE

Partners

FAGOR ARRASATE S COOP

ES Dr Elena SILVESTRE

MONDRAGON GOI ESKOLA POLITEKNIKOA JOSE MARIA ARIZMENDIARRIETA S COOP

ES Dr Lander GALDOS

ZORROTZ LEGAZPI S.L.L.

ES Mrs Maitane ALDASORO

ADIENT METAL FORMING TECHNOLOGIES GMBH

DE Housein DELI

G.P.A. GES. FÜR PLASMAAPPLIKATION MBH

DE Anne LOHMANN
TGA4 Steel applications and solutions for existing and new markets

899371 FAILNOMORE

Mitigation of the risk of progressive collapse in steel and composite building frames under exceptional events

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Accompanying measures</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>€ 958,413.20</td>
<td>01/07/2020</td>
<td>30/06/2022</td>
</tr>
</tbody>
</table>

Abstract

The main aim is to produce a set of practical and user-friendly design guidelines for mitigating the risk of progressive collapse of steel and composite structures subjected to exceptional events such as impact and explosions. This will be based on recent research projects and available normative documents in order to propose a common European design methodology. The main dissemination will be through a design manual including worked examples, which will be drafted in various national languages as well as a series of workshops in 11 European countries.

Coordinator

UNIVERSITÉ DE LIEGE

Country BE

Scientific person in charge Prof Jean-Pierre JASPART

Partners

UNIVERSIDADE DE COIMBRA PT Prof Luis SIMOES DA SILVA
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK Prof Ahmed ELGHAZOULI
UNIVERSITAET STUTTGART DE Prof Ulrike KUHLMANN
UNIVERSITÀ DEGLI STUDI DI TRENTO IT Prof Nadia BALDASSINO
UNIVERSITÀTEA POLITEHNICA TIMISOARA RO Prof Dan DUBINA
CESKE VYSOKE UCENI TECHNICKE V PRAZE CZ Prof Frantisek WALD
POLITECHNIKA RZESZOWSKA IM IGNACEGO LUKASIEWICZA PRZ PL Prof Tadeusz MARKOWSKI
VEJKOVIC NL Prof Milan
UNIVERSITAT POLITECNICA DE CATALUNYA ES Prof Enrique MIRAMBELL
INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE RENNES FR Prof Mohammed HJIAJ
CONVENTION EUROPEENNE DE LA CONSTRUCTION METALLIQUE ASBL BE Mrs Véronique DEHAN
FELDMANN + WEYNAND GMBH DE Dr Klaus WEYNAND
ARCELORMITTAL BELVAL & DIFFERDANGE SA LU Dr Renata OBIALA
TGA4 Steel applications and solutions for existing and new markets

899381

HYCAD

Innovative steel-concrete HYbrid Coupled walls for buildings in seismic areas: Advances and Design guidelines

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 1,240,596.70</td>
<td>Start Date</td>
<td>01/07/2020</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 744,358.02</td>
<td>End date</td>
<td>31/12/2023</td>
</tr>
</tbody>
</table>

Abstract

The research project HYCAD is devoted to the development of original solutions – including analysis, design, detailing and construction – related to an innovative seismic-resistant steel-concrete hybrid coupled wall system, originally introduced among other possible innovations in the 2011-2014 RFCS research project INNO-HYCO. Such system was shown through numerical analyses and experimental tests to have very encouraging potentialities in seismic areas although more studies are indispensable to foster its adoption in the construction market. The HYCAD outcomes will include guidelines and worked examples to support the design and the application of the proposed innovative hybrid system.

Coordinator

UNIVERSITEIT HASSELT

BE

Prof Herve DEGEE

Partners

UNIVERSITA DEGLI STUDI DI CAMERINO

IT

Prof Andrea DALL’ASTA

UNIVERSITA DI PISA

IT

Prof Walter SALVATORE

RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN

DE

Prof Benno HOFFMEISTER

FERRIERE NORD SPA

IT

Mrs Roberta MALLARDO

SHELTER ANONYMOS VIOMICHANIKI ETAIRIA EPENDYSEON KAI KATASKEVON

GR

Mr Prokopis TSINTZOS

OCAM S.R.L.

IT

Prof Andrea GALAZZI
TGA4 Steel applications and solutions for existing and new markets

847284

FATECO

Improvement of the fatigue performance of automotive components through innovative ecofriendly finishing operations

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 2,191,963.15</td>
<td>Start Date</td>
<td>01/06/2019</td>
<td></td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,315,177.89</td>
<td>End date</td>
<td>30/11/2022</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The improvement of vehicles safety is a EU priority. The enhancement of the components performance reduces the likelihood of accidents caused by failures of these components. The FATECO project aims the fatigue and tribological performance improvement of automotive transmission parts by means of an optimized surface integrity reached through innovative finishing techniques. Additionally, some of these techniques will allow the lubricant removal, leading to a 100% ecofriendly process.

Complementary, an automatic learning approach, capable of predicting the surface integrity and the fatigue and tribological behavior, depending on input variables (material properties, process parameters...), will be developed.

Coordinator

MONDRAGON GOI ESKOLA POLITEKNIKOA JOSE MARIA ARIZMENDIARRIETA S COOP

Country: ES
Scientific person in charge: Prof Pedro-Jose ARRAZOLA

Partners

SIDENOR INVESTIGACION Y DESARROLLOSA

Country: ES
Scientific person in charge: Dr Diego HERRERO VILLALIBRE

CENTRO RICERCHE FIAT SCPA

Country: IT
Scientific person in charge: Dr Eva BUTANO

SAMPUTENSILI MACHINE TOOLS S.R.L.

Country: IT
Scientific person in charge: Mr Enrico LANDI

ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

Country: IT
Scientific person in charge: Prof Alessandro FORTUNATO

ECOLE NATIONALE D'INGENIEURS DE SAINT-ETIENNE

Country: FR
Scientific person in charge: Prof Joel REICH
CuttingEdge4.0

* Facing edge-cracking in AHSS: towards zero-defect manufacturing through novel material characterization and data driven analytics for process monitoring

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 2,510,346.40</td>
<td>Start Date</td>
<td>01/06/2019</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,506,207.84</td>
<td>End date</td>
<td>30/11/2022</td>
</tr>
</tbody>
</table>

Abstract

Cutting operations are widely used in sheet forming. They influence post-forming operations in AHSS that are sensitive to edge damage. CuttingEdge4.0 addresses edge-cracking in AHSS by developing experimental tools and digital twins for the cutting process and incorporating Industry 4.0 data driven analytics for process monitoring. The final aim is to improve automotive industry tools to predict edge-cracking in the early part design stages. Machine learning solutions based on real-time process data will detect edge-cracking defects and assure part quality. It will permit to boost the applicability of AHSS in safety related automotive parts as a cost-efficient lightweight solution.

Coordinator

FUNDACIO CTM CENTRE TECNOLOGIC

Country: ES

Scientific person in charge: Mr Juanjo MARTIN

Partners

- **PWO CZECH REPUBLIC A.S.**
 - Country: CZ
 - Scientific person in charge: Mr Martin SLÁMA
- **FUNDACIO EURECAT**
 - Country: ES
 - Scientific person in charge: Mr Fernando PORCEL
- **CENTRO RICERCHE FIAT SCPA**
 - Country: IT
 - Scientific person in charge: Dr Daniele PULLINI
- **LULEA TEKNISKA UNIVERSITET**
 - Country: SE
 - Scientific person in charge: Prof Pär JONSÉN
- **VOESTALPINE STAHL GMBH**
 - Country: AT
 - Scientific person in charge: Mr Christian WALCH
- **FAURECIA AUTOSITZE GMBH**
 - Country: DE
 - Scientific person in charge: Dr Hosen SULAIMAN
- **TATA STEEL NEDERLAND TECHNOLOGY BV**
 - Country: NL
 - Scientific person in charge: Mr Eisso ATZEMA
800763

HSSF

Hybrid Semi-Solid Forming

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 1,966,907.70</td>
<td>Start Date</td>
<td>01/09/2018</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,180,144.62</td>
<td>End date</td>
<td>28/02/2022</td>
</tr>
</tbody>
</table>

Abstract

A majority of transport sector components are manufactured by forging and casting. Forging annihilates the defects and casting is more suitable for manufacturing complex geometries. The proposed novel Hybrid Semi-Solid Forming (HFFS) process utilizes the benefits of achieving a forged-like microstructure and yet provides net-shape production possibilities. It relies on hot processing in a temperature regime between forging and conventional semi-solid forming. Unlike in conventional semis-solid forming, a wide range for steels can be processed by HSSF and posited advantages include higher energy, material and cost efficiency over traditional techniques. Proposed project explores industrial viability of HSSF and investigates micromechanics.

Coordinator

MONDRAGON GOI ESKOLA POLITEKNIKOA JOSE MARIA ARIZMENDIARRIETA S COOP

Country	**Scientific person in charge**
ES | Dr Jokin LOZARES

Partners

CENTRO RICERCHE FIAT SCPA

Country	**Scientific person in charge**
IT | Dr Daniele PULLINI

SIDENOR INVESTIGACION Y DESARROLLO SA

Country	**Scientific person in charge**
ES | Ms Zuriñe IDOYAGA

UNIVERSITY COLLEGE LONDON

Country	**Scientific person in charge**
UK | Prof Peter LEE

FUNDACION CIE I+D+I

Country	**Scientific person in charge**
ES | Mr Iñigo Loizaga
Synopsis of RFCS Projects 2018-2021

TGA4 Steel applications and solutions for existing and new markets

800732

SCHEDULE

Steel concrete high efficiency demonstration - European collaborative experience

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Pilot&Demonstration</th>
<th>Duration (months)</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 4,486,470.30</td>
<td>Start Date</td>
<td>01/06/2018</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 2,243,235.16</td>
<td>End date</td>
<td>31/05/2022</td>
</tr>
</tbody>
</table>

Abstract

SC is an innovative form of steel-concrete composite construction comprising two steel plates connected by a grid of tie bars and infilled with structural concrete. The plates act as load bearing formwork during the placement of concrete and as reinforcement to the concrete once it hardens. Composite action between the plates and the concrete is achieved through shear studs welded to the plates. SC construction is a direct competitor to reinforced concrete (RC) for wall and floor elements with the added benefit of reduced construction time due to the elimination of reinforcement and formwork fixing, elimination of formwork removal and the ability to maximise parallel activities through offsite construction. In industrial applications, where large numbers of electrical and mechanical items are supported from the structure, SC construction eliminates the complex and time consuming installation of embedded plates in RC leading to further time and cost saving.

A recent RFCS project (SCIENCE, 2017) produced comprehensive European design rules for SC structures. It also showed that structure volume can be reduced using SC compared to RC, leading to CO2 emissions reduction. What is now needed to promote the industrial exploitation of SC construction is a demonstration of the time and cost savings at a realistic scale.

The aim of this pilot project is to document the efficiency of SC by constructing a replica of a building forming part of a nuclear power plant. This has been chosen as the nuclear sector (where buildings and containment structures are currently built from reinforced or post-tensioned concrete) offers significant potential for SC. The project will address the challenges of SC module fabrication, erection, joining and concreting. All civil and structural works will be monitored and both time and cost will be recorded. The lessons learnt will be readily transferable to other applications such as core walls in tall buildings, retaining walls, bridges, etc.

Coordinator
THE STEEL CONSTRUCTION INSTITUTE LBG

Country: UK
Scientific person in charge: Dr Bassam BURGAN

Partners

ELECTRICITE DE FRANCE
FR
Mr Julien NIEPCERON

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
FR
Mr Pierre SAUNIER

EGIS INDUSTRIES SA
FR
Mr Jean Luc TUSCHER

BOUYGUES TRAVAUX PUBLICS SA
FR
Mr Denis ETIENNE

UAB PEIKKO LIETUVA
LT
Mr Saulius GRIGAS

ONDERZOEKSCENTRUM VOOR AANWENDING VANSTAAL NV
BE
Dr Martin LIEBEHERR
Synopsis of RFCS Projects 2018-2021

TGA4 Steel applications and solutions for existing and new markets

<table>
<thead>
<tr>
<th>ID</th>
<th>STEEL S4 EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info</td>
<td></td>
</tr>
<tr>
<td>Type of Project</td>
<td>Research</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>36</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 1,936,648.10</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/09/2018</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,161,988.86</td>
</tr>
<tr>
<td>End date</td>
<td>31/08/2021</td>
</tr>
</tbody>
</table>

Abstract
STEEL S4 EV aims at putting high strength steel at the forefront of a new trend in electric vehicles: light vehicles with three or four wheels that comply with crash regulation and with more restrictive Euro NCAP demands. Weld joint design and welding methodologies research to keep material properties along the joints assuring robustness and long term durability. To do this cost competitively low investment manufacturing will be achieved by a modular and flexible structural design: a complex 3D skeleton frame of welded tubes, bent with high accuracy using programmed laser cuts will enable different vehicles sharing the same tooling.

Coordinator
FUNDACION CIDAUT

Country | **Scientific person in charge**
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ES</td>
<td>Mr Javier ROMO</td>
</tr>
</tbody>
</table>

Partners

INTERACTIVE FULLY ELECTRICAL VEHICLES SRL

Country | Scientific person in charge
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IT</td>
<td>Dr Pietro PERLO</td>
</tr>
</tbody>
</table>

BELGISCH INSTITUUT VOOR LASTECHNIEK VZW

Country | Scientific person in charge
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>Dr Koen FAES</td>
</tr>
</tbody>
</table>

LULEA TEKNISKA UNIVERSITET

Country | Scientific person in charge
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>Dr Esa VUORINEN</td>
</tr>
</tbody>
</table>

MA SPA

Country | Scientific person in charge
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IT</td>
<td>Dr Jean LAMONTANARA</td>
</tr>
</tbody>
</table>

THINKSTEP AG

Country | Scientific person in charge
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>Mr Alexander FORELL</td>
</tr>
</tbody>
</table>
Synopsis of RFCS Projects 2018-2021

TGA4 Steel applications and solutions for existing and new markets

800699

DISSIPABLE

Fully dissipative and easily repairable devices for resilient buildings with composite steel-concrete structures

<table>
<thead>
<tr>
<th>Info</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Project</td>
<td>Pilot & Demonstration</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>45</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 1,814,811.65</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/06/2018</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 907,405.82</td>
</tr>
<tr>
<td>End date</td>
<td>28/02/2022</td>
</tr>
</tbody>
</table>

Abstract

Anti-seismic devices previously designed and characterized within RFCS Projects by the proposal’s authors will be further developed taking into account the experience collected so far. Optimized structural systems will be proposed, with improved dissipation, reliability and reparability features. Single storey buildings with seismic resistance provided by the improved devices will be built and subjected to strong earthquakes. Systematic post-earthquake repair and reassembly procedures for these buildings applied and provided as “instructions for use”. Ability of repaired systems to resist strong earthquakes will be examined. Economic and environmental benefits and improved resiliency properties of the proposed systems will be quantified.

Coordinator

POLITECNICO DI MILANO

Country: IT
Scientific person in charge: Dr Alper KANYILMAZ

Partners

INSTITUTO SUPERIOR TECNICO
PT
Prof Luis CALADO

NATIONAL TECHNICAL UNIVERSITY OF ATHENS - NTUA
EL
Prof Harris MOUZAKIS

D. SOFRAS - MASINA TEAM ANONIMI ETAREIA METALLIKON & MIKANOYRGIKON ERGASION
EL
Mr Michalis SOFRAS

UNIVERSITA DEGLI STUDI DI TRENTO
IT
Prof Oreste Bursi

RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
DE
Prof Benno HOFFMEISTER

RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA
IT
Dr Giuliana ZILLI

UNIVERSITA DI PISA
IT
Prof Walter SALVATORE
DESDEMONA

Detection of steel defects by enhanced monitoring and automated procedure for self-inspection and maintenance

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 2,200,885.75</td>
<td>Start Date</td>
<td>01/06/2018</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,320,531.45</td>
<td>End date</td>
<td>28/02/2022</td>
</tr>
</tbody>
</table>

Abstract

DESDEMONA objective is the development of novel design methods, systems, procedure and technical solution, to integrate sensing and automation technologies for the purpose of self-inspection and self-monitoring of steel structures. The approach will lead to an increment of the service life of existing and new steel civil and industrial infrastructure and to a decrease in the cost associated to inspections, improving human activities performed in difficult conditions, safety and workers’ potential by the use of advanced tools.

The research aims to expand beyond the current state-of-the-art new high-quality standard and practices for steel structure inspection and maintenance through the interrelated development of the following actions:

i) steel structure geometry and condition virtualization through data fusion of image processing, thermography and vibration measurements;

ii) developing of procedure for steel defect detection by robotic and automatic systems such as Unmanned Aerial Vehicles (UAV) and ground mobile robots

iii) embedding sensor systems to revalorize and transform steel elements and structures into self-diagnostic (smart) elements and materials even through nanotechnologies,

iv) realizing an experimental lab-based apparatus and a series of case studies inspected by intelligent and robotic systems.

The project outcome will have an impact on the reduction of the cost of steel structures inspection and maintenance and on the increase of user safety and comfort in industrial and civil environment. The proposal with a multidisciplinary approach fulfils the objectives of the Strategic Research Agenda of the European Steel Technology Platform.

Coordinator

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA

Country
IT

Scientific person in charge
Prof Vincenzo GATTULLI

Partners

UNIVERSIDAD DE CASTILLA - LA MANCHA

Country
ES

Scientific person in charge
Prof Fernando JOSE CASTILLO

UNIVERSIDADE DO PORTO

Country
PT

Scientific person in charge
Prof Alvaro CUNHA

UNIVERSITA DI PISA

Country
IT

Scientific person in charge
Prof Walter SALVATORE

INSTITUT FRANCAIS DES SCIENCES ET TECHNOLOGIES DES TRANSPORTS, DE L’AMENAGEMENT ET DES RESEAUX

Country
FR

Scientific person in charge
Dr Jean DUMOULIN

AIVIEWGROUP SRL

Country
IT

Scientific person in charge
Dr Nicola MARIETTI

SIXENSE SYSTEMS

Country
FR

Scientific person in charge
Dr Gilles HOVHANESSIAN

ECISA COMPAÑIA GENERAL DE CONSTRUCCIONES SA

Country
ES

Scientific person in charge
Ms Vanessa IZQUIERDO
800649 | **WARMLIGHT**

Development of a methodology for lightweight design of warm formed components with complex geometries in heavy vehicle applications

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Research</td>
<td>42</td>
<td>€ 1,922,626.80</td>
<td>01/09/2018</td>
<td>28/02/2022</td>
</tr>
<tr>
<td></td>
<td>€ 1,153,576.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

The aim of the project is to develop a methodology for simulation based design of thick-walled components for trucks and other heavy machinery in the transport sector. The objective of the project is to enable weight-optimized components with complex geometries, meeting advanced requirements regarding the fatigue properties by avoiding assemblies and welded joints. The methodology of warm forming and a FE-simulation based forming process design is applied with new ultra-high strength (UHSS) steel grades for warm forming evaluated within the project. A process chain is defined in which the developed steel grade is combined with down-stream thermo-mechanical processes. The process chain will involve a sequence of processes steps performed at the steel manufacturer, in the hot forming process and operations at the OEM. The methodology will be fully supported by modelling and simulation, including microstructural predictions, forming simulations and final property assessments.

The objectives are to:

- Develop a predictive simulation methodology that supports an optimal design of a warm forming process in order to meet the performance and lightweight demands of the HDV sector.
- Optimize a thermo-mechanical forming process (warm forming) for manufacturing of components that meets the demands with respect to strength, elongation and fatigue limit
- Screening, evaluation and selection of new steel grades for warm forming of thick-walled components for forming of thick-walled components with complex geometries, based on alloying concepts for steel grades that are currently used for applications in industry. The ultimate target is a yield limit over 1150 MPa and elongation of more than 15% after warm forming.
- Develop a demonstrator component fulfilling strength and fatigue resistance requirements and with 25 % weight reduction compared with traditional technologies.
- Perform a complete and detailed LCA to validate the sustainability of the proposed solutions.

Coordinator

LULEA TEKNISKA UNIVERSITET
SE Prof Mats OLDENBURG

Partners

FUNDACIO CTM CENTRE TECNOLOGIC
ES Prof Daniel CASELLAS

VOESTALPINE STAHL GMBH
AT Mr Reinhard HACKL

SCANIA CV AB
SE Dr Henrik SIEURIN

CENTRO RICERCHE FIAT SCPA
IT Dr Daniele PULLINI

CONEX DIE SOLUTIONS AB
A tbc
TGA4 Steel applications and solutions for existing and new markets

<table>
<thead>
<tr>
<th>Project Code</th>
<th>Project Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>799787</td>
<td>LIGHTTECH</td>
<td>Innovative approaches of stress shot peening and fatigue assessment for the development of lightweight, durability-enhanced automotive steel leaf springs.</td>
</tr>
</tbody>
</table>

Abstract

The project aims at creating a novel R&D platform for accurate durability enhancement and assessment of automotive components made of high-strength steels, focusing here on leaf springs. The main technological project objectives are:

1. Development of a sophisticated elastoplastic FEM-based Stress Shot Peening (SSP) simulation model for systematic and reproducible elaboration of optimized SSP process parameters for enhanced product durability.

2. Development of a modularly structured, analytical fatigue life calculation model, applicable in any stage of development depending on the input data level (material data / leaf specimen data / full-scale component prototype data), independent or in conjunction with the SSP simulation model.

3. Creation of an experimental database that will be used for the input and comprehensive validation of the above theoretical models.

4. Development of two lightweight, high-performance full-scale leaf springs, with exceptional strength and fatigue performance, not attainable with the current technologies, both of high industrial interest, demonstrating the remarkable industrial exploitation potential of the above mentioned models. A huge impact of the project outcomes is expected: Development times, currently counted in years, will be shortened down to few months. Reproducibility, high quality and effectiveness will give credence and big added-value to the final products, crossing the current thresholds in the development of springs with highest requirements of lightweight, safety and durability. The competitiveness of the (currently balky) position of the European leaf spring industry and the associated European steel producers will be significantly strengthened against their non-European competitors. Starting from the leaf spring branch, the developed models will be applicable to further high-strength steel components, especially the ones with graded surface properties due to their surface treatment.

Coordinator

ARISTOTELIO PANEPISTIMIO THESSALONIKIS

Country

EL

Scientific person in charge

Prof Georgios SAVAIDIS

Partners

SAARSTAHL AG

DE

Mrs Anja TERHAAR

SOGEFI SUSPENSIONS HEAVY DUTY ITALY S.R.L.

IT

Mr Peter KINZEL

MUELLES Y BALESTAS HISPANO ALEMANAS PROJECTS SL

ES

Mr Javier ISACH

MAN TRUCK & BUS AG

DE

Mr Jose CAMPOS-HERNANDEZ

DEMOCRITUS UNIVERSITY OF THRACE

EL

Prof Georgios MALLIARIS

HOCHSCHULE BOCHUM

DE

Prof Eckehard MÜLLER
The scope TGA5 includes:

- Analytical and measurement techniques related to steelmaking/steelprocessing (quality control), work place (human impact) and to environment (external impact)
- Instrumentation, control and automation with focus on artificial intelligence and information technologies
- Decision support systems (Big Data, data analytics, interpretation and use)
- Knowledge management systems and knowledge handling
- Cyber security of steel production processes
- Social aspects of new automation or IT systems
- Working conditions and quality of life at the work place, ergonomic methods, reduction of occupational exposure (emissions, noise, ...)
- Control and protection of the environment in and around the workplace Heat treatment technology
Synopsis of RFCs Projects 2018-2021

TGA5 Steel factories - smart and human

<table>
<thead>
<tr>
<th>101033790</th>
<th>STEELAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel components assessment using a novel non-destructive residual stress ultrasonic technology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 2,015,797.40</td>
<td>Start Date</td>
<td>01/07/2021</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 989,083.44</td>
<td>End date</td>
<td>30/06/2024</td>
</tr>
</tbody>
</table>

Abstract

During steel manufacturing and in-service life of steel components, residual stress tends to appear due to mechanical and thermal loads, compromising material integrity and leading to premature failure.

STEELAR will develop an innovative NDT technology able to assess residual stress levels in rolled products and rolling rolls, both during manufacturing and in-service, providing a decision-aiding tool that will allow operators to optimize their manufacturing processes. STEELAR is based on a novel EMAT technique, allowing couplant free inspection, higher working temperatures and assessment of residual stress levels of the whole product (not just the surface) layer by layer (not an average).

Considering the magnitude of this challenge, the STEELAR consortium has joined 5 European entities: Electro Magnetic Acoustic Transducers (EMAT) technology worldwide leader (Innerspec), steel roll manufacturer (Valji), steel billets and rolled bars manufacturer (Sidenor), automation and integration expert (DBV) and the material science expert (MMV).

The project will allow steel manufacturers to increase production process reliability by controlling and characterising residual stress levels, improving competitiveness of the European steel manufacturing sector. Furthermore, rolling processes safety will be enhanced and materials scrap rate reduced, contributing to the decrease of CO2 emissions.

Coordinator

<table>
<thead>
<tr>
<th>INNERSPEC TECHNOLOGIES EUROPE SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
</tr>
<tr>
<td>ES</td>
</tr>
</tbody>
</table>

Partners

<table>
<thead>
<tr>
<th>VALJI PROIZVODNJA VALJEV IN ULITKO DOO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIDENOR INVESTIGACION Y DESARROLLOSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADVANCED MECHANICAL SYSTEMS LTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIALOVY A METALURGICKY VYZKUM SRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZ</td>
</tr>
</tbody>
</table>
Synopsis of RFCS Projects 2018-2021

TGAS Steel factories - smart and human

101034017 SmartLadle

Smart consideration of actual ladle status monitored by novel sensors for secondary metallurgy process parameters and ladle maintenance strategies

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 1,492,334.05</td>
<td>Start Date</td>
<td>01/07/2021</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 895,400.43</td>
<td>End date</td>
<td>30/06/2024</td>
</tr>
</tbody>
</table>

Abstract

What is the effect of the actual ladle status - new to worn - on steel bath properties? How do e.g. temperature or fluid flow vary with ladle conditions? When is the optimal moment for relining? SmartLadle will provide a solution for online monitoring and dynamic incorporation of actual ladle status for process control. A soft sensor for ladle status shall be developed, supported by a smart sensor for detecting refractory wear and thermal status. Measurement data, models and advisory tools shall provide information for decision making to operators to adapt ladle metallurgy process parameters to actual ladle status and decide about maintenance actions.

The overall objective of this proposed project is the online monitoring of the ladle status using a soft sensor supported by a new smart sensor and a data-based solution for the dynamic consideration of the actual ladle status in process control.

Two main objectives will be pursued:

1) The soft sensor for ladle status shall collect all available process data, including the information from the new smart sensor, during the liquid steelmaking process, in order to enable a robust and reliable estimation of the ladle status. The data of other metallurgical vessels and the tundish conditions are also considered in the solution as important boundary conditions for the liquid steelmaking ladle treatment processes. The information from the smart sensor, upon its availability, will provide additional input and thus improve the accuracy of the soft sensor. Nevertheless, the soft sensor will be able to describe the ladle status solely based on available process data, for the case that the smart sensor is not in operation.

2) The liquid steel production process shall be improved by adjusting the process parameters (e.g. stirring strategy, ladle reheating time between two heats) to the actual ladle status (e.g. ladle wear and thermal status, ladle history). This will be achieved by developing an Advisory Tool.

Coordinator

VDEH-BETRIEBSFORSCHUNGSGESELLSCHAFT mbH
Country: DE
Scientific person in charge: Dr Birgit PALM

Partners

- SCHMIEDEWERKE GROEDITZ GMBH
 Country: DE
 Scientific person in charge: Dr Tobias DUBBERSTEIN

- SWERIM AB
 Country: SE
 Scientific person in charge: Mr Reza SAFAVI NICK

- UDDEHOLMS AB
 Country: SE
 Scientific person in charge: Ms Ewa SJÖQUIST PERSSON

- SIDENOR INVESTIGACION Y DESARROLLOSA
 Country: ES
 Scientific person in charge: Mr David MAZA
101034037 DeepQuality

Use of robust deep learning methods for the automatic quality assessment of steel products

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>EU Contribution</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Research</td>
<td>42</td>
<td>€ 2,017,578.25</td>
<td>01/07/2021</td>
<td>€ 1,210,546.95</td>
<td>31/12/2024</td>
</tr>
</tbody>
</table>

Abstract

Apart from the actual AI hype, from the technical point of view, the use of machine learning (ML) is a change of the classical programming paradigm. Instead of writing code to get desired output from a given input, you provide the input with the desired output (the training data) to the ML system. The system “learns” the desired output from the samples in the training data. Translated to the problem of automatic product release this means that the system gets quality data and associated decisions and automatically learns the rule-base, that was previously written by hand.

Learning decisions from data instead of writing complex rules means that the training data becomes the source code and the essential part of the developed solution. A DL solution applicable in the industrial practice cannot just consider the type of DL technology exploited, but also must incorporate the management of the training data.

The concept of the proposed DeepQuality solution is combining deep learning technology with sophisticated management of underlying training data enabling the optimal use of all available data sources and simplify the configurability and maintainability of previous DSS. The proposed system consists of concepts realizing a human-centered lifecycle for the robust industrial application of DL quality models.

To be able to combine quality information across multiple production steps, the complete supply chain and production workflow must be exploitable by the DeepQuality system. Therefore, information relevant for the quality decision, but measured at an upstream process, has to be tracked to support consistent and robust quality decisions at the relevant plant.

As last step of the production data pipeline the pre-processed quality data must be stored in a data model exploitable for the DeepQuality system. This data model has to consider 1D- and 2D-measurement data as well as event-based data to make them exploitable for the DL process to learn quality decisions.

Coordinator

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH

Country DE **Scientific person in charge** Dr Jens BRANDENBURGER

Partners

ARCELORMITTAL BREMEN GMBH

Country DE **Scientific person in charge** Dr Frank SCHAUB

CENTRE D’EXCELLENCE EN TECHNOLOGIES DE L’INFORMATION ET DE LA COMMUNICATION

Country BE **Scientific person in charge** Mr Christophe PONSARD

UNIVERSIDAD POLITÉCNICA DE MADRID

Country ES **Scientific person in charge** Prof Joaquin ORDIERES MERE

RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA

Country IT **Scientific person in charge** Mr Alessio VENTURA

ARLENICO S.P.A.

Country IT **Scientific person in charge** Mr Piero FRITTELLA

SMS GROUP S.P.A.

Country IT **Scientific person in charge** Mr Filippo VERLEZZA
101034060
SMARTER
Steam and gas networks revamping for the steelworks of the future

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 1,840,792.80</td>
<td>Start Date</td>
<td>01/07/2021</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,104,475.68</td>
<td>End date</td>
<td>31/12/2024</td>
</tr>
</tbody>
</table>

Abstract

The project aims at providing steel producers with tools and technologies allowing constant improvement of gas and steam networks and associated management practices to reduce the waste of resources and the CO2 emissions and increase the overall efficiency. Networks revamping are analyzed considering addition of new junctions, new storage possibilities, additional sources but also future evolutions of the steel production processes within a gradual transition toward C-lean processes and technologies. Such huge revamping requires a re-optimization of the whole network and the re-configuration of aggregates for a full exploitation of the advantages of the performed changes.

Coordinator
SCUOLA SUPERIORE DI STUDI UNIVERSITARI E DI PERFEZIONAMENTO S ANNA

Country
Scientific person in charge

<table>
<thead>
<tr>
<th></th>
<th>IT</th>
<th>Dr Valentina COLLA</th>
</tr>
</thead>
</table>

Partners

ARCELORMITTAL BREMEN GMBH
DE
Dr Frank SCHAUB

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH
DE
Dr Marcus NEUER

INGAVER INNOVATIVE GASVERWERTUNGS-GMBH
DE
Mr Andreas GOLDBACH

VOESTALPINE STAHL GMBH
AT
Mrs Nina KIEBERGER

K1-MET GMBH
AT
Mrs Katharina RECHBERGER
899164 iSlag

Optimising slag reuse and recycling in electric steelmaking at optimum metallurgical performance through on-line characterization devices and intelligent decision support systems

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 2,823,365.15</td>
<td>Start Date</td>
<td>01/07/2020</td>
<td></td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,694,019.09</td>
<td>End date</td>
<td>31/12/2023</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

This project aims at improving slag valorization from electric steelmaking process route through improved slag conditioning and exploration of new recycling paths, to facilitate the implementation of a real “industrial symbiosis”. These targets are achieved by a novel intelligent system integrating innovative measurement devices for characterization of liquid and solid slag with modelling and simulation tools to assess the EAF and LF slags’ compositions and amounts.

Different systems will be exploited on industrial sites to identify the most suitable recycling paths: on-site physical-based (LIBS and deterministic model), on-line based on electrical impedance sensor and analytical/data-driven approaches (heuristic, AI-based and hybrid). All such system will provide information on the slag features which will be exploited by decision support systems providing support to the operators and plant managers for optimal valorization of the slag inside and outside the steelmaking cycle.

Coordinator

SCUOLA SUPERIORE DI STUDI UNIVERSITARI E DI PERFEZIONAMENTO S ANNA

Dr Valentina COLLA

Partners

- **DALMINE SPA**
 - IT
 - Mr Fabio PRAOLINI
- **SIDENOR INVESTIGACION Y DESARROLLOSA**
 - ES
 - Dr Inigo UNAMUNO IRIONDO
- **RNA CONSULTING - CENTRO SVILUPPO MATERIALI SPA**
 - IT
 - Dr Pietro GIMONDO
- **VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH**
 - DE
 - Dr Bernd KLEIMT
- **INSTITUT FUR BAUSTOFF-FORSCHUNG EV**
 - DE
 - Mr David ALGERMISSEN
- **TENOVA SPA**
 - IT
 - Dr Enrico MALFA
- **ACCAIERIE DI CALVISANO SPA**
 - IT
 - Dr Piero Fritella
- **DEUTSCHE EDELSTAHLWERKE SPECIALTY STEEL GMBH & CO. KG**
 - DE
 - Mr Jens Sebastian KLUNG
Synthesis of RFCS Projects 2018-2021

TGA5 Steel factories - smart and human

<table>
<thead>
<tr>
<th>899208</th>
<th>ControlInSteel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissemination and valorisation of RFCS-results in the field of "Advanced Automation and Control Solutions in Downstream Steel Processes" and development of a strategic vision for future research</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Accompanying measures</th>
<th>Duration (months)</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 401,603.60</td>
<td>Start Date</td>
<td>01/07/2020</td>
<td></td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 401,603.00</td>
<td>End date</td>
<td>30/06/2022</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Disseminating RFCS project results regarding Advanced Automation and Control in Downstream Steel Processing, the proposal aims to maximize the impact of 46 research projects. After a previous dissemination project covering automation in secondary metallurgy, a dedicated project valorising advanced control techniques throughout the solid phase is urgently needed. Dissemination will present existing project results to broad audience, including workshops on European level performed together with subcontractor ESTEP. The project evaluates used techniques, achieved impacts and the potential of transfer in a scientific way. Based on this evaluation, directions for future research will be identified and summarized in a guidance document.

Coordinator

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH
Country: DE
Scientific person in charge: Dr Marcus NEUER

Partners

SCUOLA SUPERIORE DI STUDI UNIVERSITARI E DI PERFEZIONAMENTO S ANNA
Country: IT
Scientific person in charge: Dr Valentina COLLA

RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA
Country: IT
Scientific person in charge: Dr Francesca MARCHIORI

UNIVERSIDAD POLITECNICA DE MADRID
Country: ES
Scientific person in charge: Prof Joaquin ORDIERES MERÉ
Synopsis of RFCS Projects 2018-2021

TGAS Steel factories - smart and human

899248 InTEGrated

Development of innovative TEG systems optimized for energy harvesting from EAF off-gas cooling water and radiative waste heat sources designed to be cost-effectively InTEGrated within steel plants

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Research</td>
<td>42</td>
<td>€ 1,997,028.05</td>
<td>01/07/2020</td>
<td>31/12/2023</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td></td>
<td>€ 1,198,216.83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

InTEGrated is the continuation of the THERELEXPRO project. InTEGrated research will develop innovative thermoelectric generation prototypes based on the concepts of compactness, modularity and overheating protection systems, as highlighted by the experience gained from the former project. New prototypes will be optimized for energy harvesting from EAF off-gas cooling water and high temperature radiative waste heat, designed to be integrated within new or existing plants. A dedicated finite-element “system model” will be created, able to simulate the performance of thermoelectric systems. InTEGrated will address key improvements aimed to raise the technology up to TRL 7.

Coordinator

RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA

Country

IT

Scientific person in charge

Dr Ugo CHIAROTTI

Partners

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH

DE

Dr Frank MINTUS

ERGOLINES LAB SRL

IT

Dr Isabella MAZZA

FERRIERE NORD SPA

IT

Mr Loris BIANCO

CARDIFF UNIVERSITY

UK

Prof Min GAO

QUICK OHM KUPPER & CO GMBH

DE

Mr Nils KATENBRINK

ESF ELBE-STAHLWERKE FERALPI GMBH

DE

Dr Piero FRITTELLA
Synopsis of RFCS Projects 2018-2021

TGAS Steel factories - smart and human

RoboInspect

MOBILE ROBOTS FOR INSPECTION OF STEEL PLANTS

<table>
<thead>
<tr>
<th>Info</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Project</td>
<td>Research</td>
<td>Duration (months)</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 2,076,778.00</td>
<td>Start Date</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,246,066.73</td>
<td>End date</td>
</tr>
</tbody>
</table>

Abstract

The objective of RoboInspect is to introduce novel robotic inspection systems in the European steel industry. For this purpose, existing technologies based on unmanned vehicles are assigned to inspection tasks and technological gaps are closed by further developments. The aims are to reduce downtimes and increase occupational safety. Unmanned aerial and ground vehicles are developed for autonomous operation during running production in confined and hazardous areas, using custom indoor navigation concepts. Software is provided to accelerate damage analysis of facilities and processes as well as to detect online plant misalignments. The developments will be tested in two industrial plants in four typical use cases.

Coordinator

| VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH | DE | Mr Julian KREMEYER |

Partners

- **SWERIM AB**
 - SE
 - Dr Jan NIEMI

- **RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA**
 - IT
 - Dr Roberto PIANCALDINI

- **SALZGITTER FLACHSTAHL GMBH**
 - DE
 - Mr Sebastian STRÜH

- **FERRIERE NORD SPA**
 - IT
 - Mr Denis AZZANO

- **CLEES CHRISTIAN-ALEXANDER**
 - DE
 - Mr Christian CLEES

- **DIMASIMMA INTRALOGISTIC**
 - IT
 - Mr Giuseppe ROMANI
EnerMIND

Energy Management in the Era of Industry 4.0

<table>
<thead>
<tr>
<th>Info</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Project</td>
<td>Pilot & Demonstration</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>42</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€1,231,022.10</td>
</tr>
<tr>
<td>Start Date</td>
<td>01/07/2020</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€615,511.05</td>
</tr>
<tr>
<td>End date</td>
<td>31/12/2023</td>
</tr>
</tbody>
</table>

Abstract

The project addresses the problem of the optimal Energy Management in steel plant through a software demonstrator characterized by a new IoT/IIoT architecture connecting two network rings to bridge the energy market and the internal energy management including utilities. The solution will make extensive use of Artificial Intelligence, Machine Learning and Optimization techniques to develop new data-driven models with evolutionary capabilities able to “learn from experience”. Superior forecasting and reliable capabilities will be integrated leading to optimized planning and resource scheduling. Security will be included considering technologies like Blockchain or others to securely certify transactions of energy exchange.

Coordinator

SCUOLA SUPERIORE DI STUDI UNIVERSITARI E DI PERFEZIONAMENTO S ANNA

Country	**Scientific person in charge**
IT | Dr Valentina COLLA |

Partners

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH

Country	**Scientific person in charge**
DE | Dr Marcus NEUER |

DANIELI AUTOMATION SPA

Country	**Scientific person in charge**
IT | Mr Marco OMETTO |
OptimaSteel addresses the ergonomics problems caused by human computer interaction in a steel industry with an ageing workforce, and its impact in working conditions, health and safety and quality of life in the workplace.

Successful ageing at work and how to support and retain older workers is a critical challenge for organizations. Such issues are particularly accurate in the steel industry. Steel is an ageing industry. The median age of steel industry employees has always been higher than the all-manufacturing average, both in Europe and in the US.

OptimaSteel will address these problems by identifying, assessing, demonstrating and disseminating towards the steel industry state of the art technologies and methods to improve the quality of life of older adults in their working environment. The solution to current health, safety and wellbeing of steel workers does not rely on a single technology or on a new development, and only by combining physical, ergonomic, nutritional and cognitive aspects can a holistic approach to enhance the wellbeing and quality of life at the workplace of older adults be developed. The main goal of our project is therefore to build on state of the art solutions from top-end technology developers and research institutes across EU, to provide well-balanced and holistic systems that are able to meet the steel industry needs and offers benefits and an enhanced quality of life for older adults at the workplace.
Synopsis of RFCS Projects 2018-2021

TGAS Steel factories - smart and human

<table>
<thead>
<tr>
<th>839227</th>
<th>REUSteel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissemination of results of the European projects dealing with reuse and recycling of by-products in the steel sector</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Accompanying Measures</th>
<th>Duration (months)</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 518,858.05</td>
<td>Start Date</td>
<td>01/06/2019</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 518,858.05</td>
<td>End date</td>
<td>30/11/2021</td>
</tr>
</tbody>
</table>

Abstract

Many research initiatives and projects funded by the RFCS have been undertaken in order to improve reuse and recycling of by-products which are produced in different stages of the integrated or electric steel production cycle (e.g. slags, sludge and scale) and for recovering valuable materials from wastes. Recently, the concept of “circular economy” is receiving increasing attention in the scientific and technical community. The circularity concept pushes researchers and industries to look for synergies with other industrial sectors to analyze and investigate solution for improving by-product re-use and recycling both inside and outside the steelmaking cycle, by thus developing examples of industrial symbiosis.

However, the joint efforts of the EU steel industries on this theme are still not widely known. Moreover, the exploitation of some research results are sometimes hampered by not homogeneous regulations in the different European countries concerning even the definition and classification of some materials as by-products or wastes.

REUSteel aims at extensively disseminating and valorizing important research results on the reuse and recycling of by-products, based on an integrated critical analysis of many list of EU-funded projects, in order to promote the results exploitation and increase the synergies with other sectors. This analysis will also aim at identifying the most urgent needing and ambitions of the EU steel sector, by defining future research topics in this field and highlighting eventual non-technical showstoppers. Common actions will be identified in order to overcome or smooth the existing obstacles and to pave the way to research and implementation of innovative solutions. The target is a wider improvement of by-products reuse and recycling, which can be developed in the future years. The key findings will be implemented in the ESTEP’s Strategic Research Agenda. REUSteel will contribute to the low carbon Europe and Big-Scale initiative of EUROFER.

Coordinator

SCUOLA SUPERIORE DI STUDI UNIVERSITARI E DI PERFEZIONAMENTO S ANNA

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT</td>
<td>Dr Valentina COLLA</td>
</tr>
</tbody>
</table>

Partners

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH	DE	Mr Pietruck ROLAND
RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA	IT	Dr Pietro GIMONDO
INSTITUT FUR BAUSTOFF-FORSCHUNG EV	DE	Mr David ALGERMISSEN
SWEREA MEFOS AB	SE	Dr Mikael LARSSON
Synopsis of RFCS Projects 2018-2021

TGAS Steel factories - smart and human

<table>
<thead>
<tr>
<th>847296</th>
<th>OMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online Microstructure Analytics</td>
<td></td>
</tr>
<tr>
<td>Info</td>
<td>Type of Project</td>
</tr>
<tr>
<td></td>
<td>Total Budget</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
</tr>
<tr>
<td></td>
<td>Start Date</td>
</tr>
<tr>
<td></td>
<td>End date</td>
</tr>
</tbody>
</table>

Abstract

To reduce CO2 emissions and energy consumption in mobility and transport, the steel industry enables weight savings by expansion of the Advanced High Strength Steel (AHSS) product portfolio. AHSS owe their strength to their largely refined and complex microstructures, containing multiple metallurgical phases. Optimal control of the thermo-mechanical processing of AHSS requires inline sensors for real-time monitoring of evolution and consistency of microstructure and material properties. This OMA proposal aims at improving the quality of the information on AHSS’s microstructure and mechanical properties extracted from existing inline sensing equipment by combining the strengths of multiscale material models, model inversion techniques and advanced data analytics.

Coordinator

| TATA STEEL NEDERLAND TECHNOLOGY BV |
| Country | NL |
| Scientific person in charge | Mr Frenk VAN DEN BERG |

Partners

| SSAB EMEA AB |
| Country | SE |
| Scientific person in charge | Mr Hans SOLLANDER |

| ASOCIACION CENTRO TECNOLOGICO CEIT-IK4 |
| Country | ES |
| Scientific person in charge | Ms Ane MARTINEZ DE DUERENU |

| THE UNIVERSITY OF WARWICK |
| Country | UK |
| Scientific person in charge | Prof Claire DAVIS |

| THE UNIVERSITY OF MANCHESTER |
| Country | UK |
| Scientific person in charge | Prof Anthony PEYTON |

| NEDERLANDSE ORGANISATIE VOOR TOEGEPAST NATUURWETENSCHAPPELIJK ONDERZOEK TNO |
| Country | NL |
| Scientific person in charge | Mr Quincy MARTINA |

| SWERA MFOS AB |
| Country | SE |
| Scientific person in charge | Dr Mikael MALSTRÖM |

| SCUOLA SUPERIORE DI STUDI UNIVERSITARI E DI PERFEZIONAMENTO SANT’ANNA |
| Country | IT |
| Scientific person in charge | Dr Valentina COLLA |

| COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES |
| Country | FR |
| Scientific person in charge | Dr Christophe REBOUD |

| ECOLE NORMALE SUPERIEURE DE CACHAN |
| Country | FR |
| Scientific person in charge | Prof Olivier HUBERT |

| ALTAIR ENGINEERING FRANCE |
| Country | FR |
| Scientific person in charge | Mr Patrick LOMBARD |

| UNIVERSITE GRENOBLE ALPES |
| Country | FR |
| Scientific person in charge | Prof Stéphane LABBÉ |
Synopsis of RFCS Projects 2018-2021

TGAS Steel factories - smart and human

E-CO-LadleBrick

Ecological and Economical waste management of the ladle refractory bricks by implementing circular economy criteria

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 1,280,225.60</td>
<td>Start Date</td>
<td>01/06/2019</td>
<td></td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 768,135.36</td>
<td>End date</td>
<td>31/05/2022</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Ladle refractory material waste in the European Steelworks is currently mostly being dumped in landfills. This Circular Economy Project answers to this situation based on a 4 R’s model, combining a Reduction of the waste by means of monitoring and optimizing the ladle refractory consumption (via remaining brick thickness) with processes for Reusing/Remanufacturing and Recycling the ladle refractory brick wastes. The final optimized application will come from an expert decision tree and accompanied by the corresponding LCA studies. This innovative approach and knowledge would be totally transferable to other steel companies with both significant environmental and economic benefits.

The main aims of the “E-CO-LadleBrick” project are the following:

- To achieve an innovative ecological and economical waste management for the worn ladle bricks by implementing Circular Economy criteria based in environmental 4R model (Reduce, Reuse, Remanufacture and Recycle).
- To optimize remaining final thickness for the bricks used as ladle refractory (Reduce) by means of developing a 3D laser scanner technique (aiming to high accuracy measures, deviations under 10 mm), together with machine learning models and regression analysis. This approach can be replicated and implemented in any other Steel Plant.
- To optimize the valorisation of the worn bricks after their use as ladle refractory (Reuse, Remanufacture and Recycle) by means of finding suitable applications as well as their benefits and restrictions and implementing a data-based decisión mechanism for best valorisation in either Reuse, Remanufacture or Recycle. This approach can be replicated and implemented in any other Steel Plant.

Coordinator

SIDENOR INVESTIGACION Y DESARROLLOSA

ES

Mr David MAZA

Partners

FUNDACION TECNALIA RESEARCH & INNOVATION

ES

Mr Abel CAPELASTEGUI

FORSCHUNGSGEMEINSCHAFT FEUERFEST EV

DE

Mr Christian DANNERT

2.-O LCA CONSULTANTS APS

DK

Dr Ivan MÜNOZ
Synopsis of RFCS Projects 2018-2021

TGAS Steel factories - smart and human

<table>
<thead>
<tr>
<th>Project Code</th>
<th>Project Name</th>
<th>Description</th>
<th>Info</th>
</tr>
</thead>
</table>
| 847203 | DynReAct | Refinement of production scheduling through dynamic product routing, considering real-time plant monitoring and optimal reaction strategies | Type of Project: Research
Duration (months): 42
Total Budget: € 1,275,448.50
Start Date: 01/06/2019
EU Contribution: € 765,269.10
End date: 30/11/2022 |

Abstract

Aim of this project is to improve flexibility of production scheduling in flat steel production by generation of optimized production plans for each individual coil at each production step considering real-time plant information. This concept enables immediate reactions to critical situations like insufficient plant performances or off-spec coils. The optimal routings will be estimated using real-time capable plant performance models derived from machine learning on large historical data, which will be incorporated in multi-objective, stochastic optimization methods.

The applicability of the system will be demonstrated at tin-plate production providing multiple production steps with free choice of multiple plants.

Coordinator

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH
Country: DE
Scientific person in charge: Dr Jens BRANDENBURGER

Partners

THYSSENKRUPP RASSELSTEIN GMBH
Country: DE
Scientific person in charge: Mr Erwin SIROVNIK

SCUOLA SUPERIORE DI STUDI UNIVERSITARI E DI PERFEZIONAMENTO SANT’ANNA
Country: IT
Scientific person in charge: Dr Valentina COLLA

UNIVERSIDAD POLITÉCNICA DE MADRID
Country: ES
Scientific person in charge: Prof Ordieres JOAQUIN
AutoSurveillance

Automatic surveillance of hot rolling area against intentional attacks and faults

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Duration (months)</th>
<th>Total Budget</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>48</td>
<td>€ 1,589,524.25</td>
<td>01/06/2019</td>
<td>31/05/2023</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 953,714.55</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Is a hot rolling mill secured against intentional attacks? Could a re-heating furnace or the accelerated cooling be used for sabotaging the quality of a European steel producer? How can attacks be separated from fault behaviour? AutoSurveillance will provide a solution for detecting anomalies in re-heating furnaces, hot-rolling mills and accelerated cooling, a solution that is capable of announcing a threat and in parallel distinguishing between faults and intentional attacks. It focuses on the process-oriented treatment of such occurrences and explicitly not on the IT perspective. The project consortium of AutoSurveillance concluded that there is urgent need to increase the security of control system in European steel plants from an inner process perspective and not to trust in the security an outer IT environment can offer. Therefore any successful novel kind of detection, healing and resilient strategy must be founded on the process knowledge itself. Although the occurrence of such events is actually rather low, the economic stakes of such an event are unbearable high for the European steel industry: the consequences are production out-times, damaged machinery and repair activities, all of which eat up man-hours and money in an excessive way. It hardens the automation system against it on process level. Many other effects can obfuscate or obscure the view on the process, such as sensor and actuator uncertainties and process anomalies. To detect intentional sabotage, one must prior exclude things like drifts or errors in the measurements and unintentional process anomalies caused by the instability of process situations. Hence there is a need for monitoring control systems online, to detect any kind of abnormal behaviour. Sensorial deficiencies, actuator malfunctioning or process perturbations must be elemental part of a system that secures against intentional damages!

Coordinator

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH

Country: DE
Scientific person in charge: Dr Andreas WOLFF

Partners

CENTRE D’EXCELLENCE EN TECHNOLOGIES DE L’INFORMATION ET DE LA COMMUNICATION
Country: BE
Scientific person in charge: Mr Mohamed BOUKHEBOUZE

SCUOLA SUPERIORE DI STUDI UNIVERSITARI E DI PERFEZIONAMENTO SANT’ANNA
Country: IT
Scientific person in charge: Dr Valentina COLLA

PRISMA IMPIANTI SPA
Country: IT
Scientific person in charge: Dr Claudio BOTTAZZI

UNIVERSIDAD POLITECNICA DE MADRID
Country: ES
Scientific person in charge: Prof Joaquin ORDIERES

SIDENOR INVESTIGACION Y DESARROLLOSA
Country: ES
Scientific person in charge: Mr Asier ARTEAGA
Synopsis of RFCS Projects 2018-2021

TGAS Steel factories - smart and human

<table>
<thead>
<tr>
<th>800677</th>
<th>NEWTECH4STEEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced process stability and product quality in steel production by exploitation of break-through technologies for real-time monitoring, control and forecasting inspired by Big Data concepts</td>
<td></td>
</tr>
</tbody>
</table>

Info

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Budget</td>
<td>€ 2,405,313.75</td>
<td>Start Date</td>
<td>01/06/2018</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 1,443,188.25</td>
<td>End date</td>
<td>30/11/2021</td>
</tr>
</tbody>
</table>

Abstract

The constantly growing requirements to European steel production concerning product quality and process efficiency are accompanied by massive increases of data and information collection at the processes and about the products.

So, there is the possibility, but also the need for new methods to observe and control production processes and to determine and to forecast the properties of intermediate and final products. These new technologies have to exploit comprehensively those huge information sources collected at the steel plants.

This project will focus on dedicated use cases in steel industry, which are related to actual problems and tasks in modern steel production.

The consortium will develop and implement methodologies, which will meet the requirements of examined steel processes on the one hand, but also exploit all technological and scientific possibilities offered by latest technologies concerning data handling and data analysis on the other hand.

To reflect the variety in steel production, the selected industrial use cases cover different processing routes and various final products like flat steel, tube and wire production. Thereby the project findings will be applied and tested under industrial conditions to adjust them to the needs of the European steel industry. The participating non-steel partners like research organisations and suppliers for steel industry guarantee the exploitation of latest available methodologies and technologies.

The final aims of this proposed project are:

- the developed and applied methods for an improved process observation and control as well as extended tools to assess and forecast (intermediate) product quality as examples for the successful application of new technologies,
- to provide evidence of the applicability and efficiency of such methods,
- to make proposals and uncover possibilities of developed new methods outside the investigated use cases to state their benefits for the complete European steel sector.

Coordinator

VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>Mr Norbert LINK</td>
</tr>
</tbody>
</table>

Partners

SALZGITTER FLACHSTAHL GMBH

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>Mr Gerd BARESCH</td>
</tr>
</tbody>
</table>

SCUOLA SUPERIORE DI STUDI UNIVERSITARI E DI PERFEZIONAMENTO SANT’ANNA

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT</td>
<td>Dr Valentina COLLA</td>
</tr>
</tbody>
</table>

ACCIADERIE E FERRIERE DI PIOMBINO SPA

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT</td>
<td>Mrs Alessandra MERIGO</td>
</tr>
</tbody>
</table>

IBA AG

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>Dr Andreas QUICK</td>
</tr>
</tbody>
</table>

CENTRE D’EXCELLENCE EN TECHNOLOGIES DE L’INFORMATION ET DE LA COMMUNICATION

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>Mr Stéphane MOUTON</td>
</tr>
</tbody>
</table>

RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT</td>
<td>Dr Luca PIEDIMONTE</td>
</tr>
</tbody>
</table>

MARCEGAGLIA CARBON STEEL SPA

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT</td>
<td>Dr Alessandro FERRAIUOLO</td>
</tr>
</tbody>
</table>

DANIELI AUTOMATION SPA

<table>
<thead>
<tr>
<th>Country</th>
<th>Scientific person in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT</td>
<td>Mr Andrea POLO</td>
</tr>
</tbody>
</table>
Synopsis of RFCS Projects 2018-2021

TGAS Steel factories - smart and human

800657 CYBERMAN4.0

Cyber Physical System-based approach for intelligent data-driven maintenance operations applied to the rolling area

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 2,658,641.15</td>
<td>Start Date</td>
<td>01/09/2018</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 1,595,184.69</td>
<td>End Date</td>
<td>28/02/2022</td>
</tr>
</tbody>
</table>

Abstract

Cyberman4.0 aims at turning maintenance strategy in steel industry from preventive to optimized predictive maintenance by experimental systems and tools built upon the Industry 4.0 enabling technologies proposing the Integrated Maintenance Model 4.0 (IMM4.0) applied into the rolling area. Investigations on new methods and experimental tools will validate approach and expected benefits like flexibility, machine uptime and costs. Four use cases will be developed considering flat products, an innovative rolling mill for long products the hot and cold rolling roll shop management for flat products connecting product quality and machine status as a valuable indicator of health awareness.

Coordinator

SCUOLA SUPERIORE DI STUDI UNIVERSITARI E DI PERFEZIONAMENTO SANT’ANNA

Country	**Scientific person in charge**
IT | Dr Valentina COLLA

Partners

- **DANIELI AUTOMATION SPA**
 IT | Mr Andrea POLO

- **TATA STEEL IJMUIDEN BV**
 NL | Dr Johan BERNARD

- **RINA CONSULTING - CENTRO SVILUPPO MATERIALI SPA**
 IT | Dr Fabio SANFILIPPO

- **ACCIARIA ARVEDI SPA**
 IT | Mr Alessandro RIZZI

- **TENOVA SPA**
 IT | Mr Claudio TREVISAN

- **VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH**
 DE | Mr Fabien NKWITCHOUA

- **TBC**
 DE | tbc
793505

WISEST

4.0 Lean System integrating workers and processes

<table>
<thead>
<tr>
<th>Info</th>
<th>Type of Project</th>
<th>Research</th>
<th>Duration (months)</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Budget</td>
<td>€ 1,387,284.40</td>
<td>Start Date</td>
<td>01/09/2018</td>
</tr>
<tr>
<td></td>
<td>EU Contribution</td>
<td>€ 832,370.64</td>
<td>End date</td>
<td>31/08/2022</td>
</tr>
</tbody>
</table>

Abstract

The project idea is to develop advanced tools to automatically collect information from workers and processes, integrate this information correlating both data sets time wise and event wise and finally produce an assessment of the whole system and offer recommendations for improvement.

The recommendations will aim to improve working conditions, safety, knowledge preservation and training (for the workers area) and improve quality and lead to lean operation & maintenance (for the whole system composed of workers and industrial processes). The specific purpose is to integrate I4.0 and people in different Steel processes (like scrap management, steel production, final product preparation and dispatching, coil cutting in automotive industry, etc) in order to promote the application of Lean culture principles in steel industry in combination with IIoT and I4.0. Factors like energy consumption, safety, environmental and workers’ health parameters at work place will be considered as KPI’s associated to the lean oriented assessment of every process. Working topics are:

- Collection of information about workers position and health parameters (using wearable devices).
- Collection of event oriented information from the processes (using PLCs signals and IIoT).
- Integration of workers’ information within processes status to assess the whole process.
- Consideration of all the factors, including safety & health in processes lean performance.

Coordinator

SUAHUR INNOVATION SLU

Country

ES

Scientific person in charge

Mr Carlos URUENA

Partners

UNIVERSIDAD POLITECNICA DE MADRID

ES

Prof Joaquin ORDIERES

GESCRAP HUNGARY KORLATOLT FELELOSSEGU TARSASAG

HU

Mrs Jaroslava VLADYKOVA

GESTAMP LOUNY S.R.O

CZ

Mr Jaime CAMPO

ACEROS PARA LA CONSTRUCCIÓN S.A.

ES

Mrs Anna CASALS
QUALITY4.0

Transparent product quality supervision in the age of Industry 4.0

<table>
<thead>
<tr>
<th>Info</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Project</td>
<td>Research</td>
<td>Duration (months)</td>
</tr>
<tr>
<td>Total Budget</td>
<td>€ 1,201,417.90</td>
<td>Start Date</td>
</tr>
<tr>
<td>EU Contribution</td>
<td>€ 720,850.74</td>
<td>End date</td>
</tr>
</tbody>
</table>

Abstract

In a world where steel products can be acquired through platforms like Alibaba.com and the steel market is flooded with cheap steel from Chinese overcapacity, European Steel producers urgently need differentiation as distance or referencing are not a protection anymore.

From steel customers' point of view, one main reason for the decision for a specific supplier is trust in the fact that the delivered product fulfills his individual requirements. Consequently only if the European Steel Industry succeeds to win customer-trust and solidifies client intimacy, it will achieve a durable competitive advantage and thus reduce pressure from world-wide imports.

Consequently, this project aims to establish a new level of customer-supplier collaboration by means of the horizontal integration of quality information over the complete supply chain comprising the full exploitation of all available quality information and knowledge from the measurement up to the final product at downstream industries (e.g. car manufacturer).

In this project an adaptive Quality4.0 platform will be developed which allows online analytics of large data streams to realise decisions on product quality and provide tailored information of high reliability that can be individually exchanged with customers to put a common focus on the manufacturing of highest quality goods.

A bidirectional customer/supplier exchange of quality relevant information is foreseen, enabling lower production costs, increased yield and improved identification of quality problems in steel production processes.

In times of challenging global markets with very strong competition from outside Europe it is of strategic importance for the European steel industry to proactively promote such a common platform instead of reacting on specific customer demands.

Coordinator

VDEH-BETRIEBSFORSCHUNGsinstitut GMBH

Country

DE

Scientific person in charge

Dr Jens BRANDENBURGER

Partners

THYSSENKRUPP RASSELSTEIN GMBH

DE

Mr Christoph SCHIRM

SCUOLA SUPERIORE DI STUDI UNIVERSITARI E DI PERFEZIONAMENTO SANT’ANNA

IT

Dr Valentina COLLÀ

CENTRE D’EXCELLENCE EN TECHNOLOGIES DE L’INFORMATION ET DE LA COMMUNICATION

BE

Mr Stéphane MOUTON

SIDENOR INVESTIGACION Y DESARROLLOSA

ES

Mr Asier ARTEAGA
ANNEX I: NEW STRUCTURE TECHNICAL GROUPS (effective since 14/06/2019)

Following the advices of CAG and SAG and endorsement of COSCO in 2018, the Commission has decided to reduce the number of the Technical Groups from 12 to 7 with 2 for Coal (instead of 3) and 5 for Steel (instead of 9). This contributes to make the management of the RFCS programme more efficient, to update the coal and steel themes, and to give more coherence to the portfolio of RFCS coal and steel projects. The New Technical Groups are the following: 2 TGK for Coal and 5 TGA for Steel.¹

GENERAL new-old TG CORRESPONDENCE

<table>
<thead>
<tr>
<th>New TGs</th>
<th>Old TGs</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGK1 - POST-MINING ISSUES, SAFE AND PRODUCTIVE COAL MINING OPERATIONS</td>
<td>TGC1</td>
</tr>
<tr>
<td>TGK2 - ENVIRONMENTAL, TECHNICAL AND ECONOMIC ISSUES RELATED TO COAL</td>
<td>TGC2 TGC3</td>
</tr>
<tr>
<td>TREATMENT AND USE</td>
<td></td>
</tr>
<tr>
<td>TGA1 - IRON AND STEELMAKING</td>
<td>TGS1 TGS2</td>
</tr>
<tr>
<td>TGA2 - DOWNSTREAM STEEL PROCESSING</td>
<td>TGS3 TGS4</td>
</tr>
<tr>
<td>TGA3 - CONCEPTION OF STEEL PRODUCTS</td>
<td>TGS5 TGS6</td>
</tr>
<tr>
<td>TGA4 - STEEL APPLICATIONS AND SOLUTIONS FOR EXISTING AND NEW MARKETS</td>
<td>TGS7 TGS8</td>
</tr>
<tr>
<td>TGA5 - STEEL FACTORIES - SMART AND HUMAN</td>
<td>TGS9</td>
</tr>
</tbody>
</table>

EXCEPTIONAL TRANSFERT OF PROJECTS

Because of the changes in the scientific scope² of each TG, in 2019 the following projects have been transferred to a different TG.

<table>
<thead>
<tr>
<th>PROJECT acronym and name</th>
<th>TG TRANSFERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFCS-2018-847318 – CleanEX</td>
<td>Transferred from TGA3 to TGA2</td>
</tr>
<tr>
<td>RFCS-2018-847341 – CentriClean</td>
<td>Transferred from TGA3 to TGA2</td>
</tr>
<tr>
<td>847260 (2019) – Slagreus</td>
<td>Transferred from TGS9 to TGA1</td>
</tr>
<tr>
<td>800762 (2018) – Ecoslag</td>
<td>Transferred from TGS9 to TGA1</td>
</tr>
<tr>
<td>800654 (2018) – Wham</td>
<td>Transferred from TGS9 to TGA1</td>
</tr>
</tbody>
</table>

¹ Extract from the RFCS Information package 2019, 14 June 2019
² See link supra.