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1. Introduction 

1 https://www.undatarevolution.org/wp-content/uploads/2014/11/A-World-That-Counts.pdf

As in Dickens’ words, it is indeed the best 
of times and the worst of times. We live in a 
time of prosperity, but we also face tremen-
dous global challenges that threaten our exist-
ence as a species – from poverty and hunger 
to climate change and the destruction of entire 
ecosystems. Effectively tackling these chal-
lenges requires an ambitious and coordinated 
commitment from most nations in the world. 
Hence, since the mid-1990s, starting with the 
Copenhagen Declaration on Social Development 
in 1995 and the six International Development 
Goals that followed in 1996, the United Nations 
(UN) has periodically established far-reaching 
goals for the world, aimed at addressing the 
most pressing issues of our times at a global 
scale and in a coordinated manner. 

In 2015, when the Millennium Development 
Goals approached their target date, the UN 
defined a new set of global goals and the 
2030 Agenda for Sustainable Development, 

which was adopted by all EU Member States 
in 2015. The resulting global goals are known 
as the 17 SDGs, a call to action by all coun-
tries (developed and developing) with the aim 
of eradicating the world’s poverty and other 
deprivations, together with improving health 
and education, fostering economic growth, re-
ducing inequality, preserving our environment 
and combating climate change. 

In parallel to the establishment of such an am-
bitious agenda for the world, a global move-
ment gained traction on the role that data 
and AI could play in this context from two per-
spectives: first, to help us better measure the 
level of achievement of the SDGs and identify 
weaknesses, priorities and areas for improve-
ment; and second, to enable and accelerate 
the achievement of the SDGs. In November 
2014, the UN published the report ‘A World 
that Counts: mobilizing the data revolution 
for sustainable development’1, authored by 

Summary

The chapter explores both opportunities and 
challenges linked to the implementation of 
artificial intelligence (AI) methods to address 
the sustainable development goals (SDGs). 
AI has the potential to improve our ability to 
measure and identify weaknesses, priorities 
and areas of improvement related to the 
SDGs, while accelerating their achievement. 
To realise such potential, five types of barriers 
need to be addressed (institutional, technical, 
ethical, financial and environmental) to ef-
fectively leverage the power of data-driven AI 
methods and accelerate their positive impact 
on the SDGs.

‘It was the best of times, it was the worst of 
times, it was the age of wisdom, it was the age 
of foolishness, it was the epoch of belief, it was 
the epoch of incredulity, it was the season of 
Light, it was the season of Darkness, it was the 
spring of hope, it was the winter of despair, we 
had everything before us, we had nothing be-
fore us, we were all going direct to Heaven, we 
were all going direct the other way – in short, 
the period was so far like the present period, 
that some of its noisiest authorities insisted on 
its being received, for good or for evil, in the 
superlative degree of comparison only.’
      

Charles Dickens, A Tale of Two Cities
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the Independent Expert Advisory Group on a 
Data Revolution for Sustainable Development 
as requested by the UN Secretary-General. 
The report outlines both the opportunities and 
the risks that the ‘data revolution’ presents for 
sustainable development, and proposes five 
key recommendations for actions, including 
investing resources in capacity development, 
sharing technology and innovations for the 
common good, developing a global consensus 
on principles and standards and creating the 
Global Partnership for Sustainable Develop-
ment Data2, which was created in 2015 ‘to 
help stakeholders across countries and sectors 
fully harness the data revolution for sustain-
able development, using this new knowledge 
to improve lives and protect the planet’. The 
UN subsequently organised three editions of 
the World Data Forum, in 2017, 2018 and 
2020 in South Africa, Dubai and Switzerland, 
respectively. The 2018 Forum wrapped up with 
the launch of the Dubai Declaration, which 
aims to increase financing for better data and 
statistics for sustainable development.

Moving from a global context to the European 
arena, the European Commission established 
six priorities for the 2019-2024 period3, which 
include the twin green and digital transitions, 
captured by the ‘European Green Deal’ and ‘Eur-
ope fit for the digital age’ priorities, respectively. 
The European Commission considers these two 
transitions to be deeply interrelated, as it is evi-
dent that digital technologies are playing and will 
continue to play a crucial role in enabling Europe 
to move to a clean and circular economy, restore 
biodiversity and reduce pollution. Thus, data and 
AI are considered to be not only key pillars of the 
digital transition, but also of the green transition. 

2 https://www.data4sdgs.org/
3 https://ec.europa.eu/info/strategy/priorities-2019-2024_en
4 https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
5 https://www.europarl.europa.eu/italy/resource/static/files/import/intelligenza_artificiale_30_aprile/ai-hleg_policy-and-in-

vestment-recommendations.pdf
6 https://data.europa.eu/en/highlights/data-governance-act-open-data-directive
7 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206

The European Commission recognises that data 
– and more importantly, the ability to use it, 
analyse it (prominently by means of data-driv-
en AI methods) and draw insights from it – are 
essential for sustainable growth and innovation. 
The European vision for AI entails developing and 
using trustworthy AI systems, that is, systems 
that are safe, ethical, transparent, unbiased and 
under human control. Such a vision is articulated 
in several strategic documents, including an eth-
ical framework to achieve trustworthy AI4, a set of 
policy and investment recommendations to boost 
Europe’s competitiveness in AI5, a new European 
regulation on data governance to facilitate data 
sharing across the Member States – placing cit-
izens at its centre and contributing to the creation 
of a European single data market6, and a new 
European regulation of AI systems based on a 
classification of their risk, which can range from 
unacceptable (and thus banned) to minimal risk7. 

A key question posed by many scientists, policy 
makers, practitioners, activists and citizens to-
day is whether these data and AI revolutions 
that we are immersed in will contribute to 
achieving sustainable development, i.e. de-
velopment that not only meets the needs of 
the present but ensures the ability of future 
generations to meet their own needs. 

In this chapter, I provide an overview of both 
the tremendous opportunities that data-driv-
en AI methods offer to help us address the 
17 SDGs and the challenges and limitations 
posed by AI that might hinder the realisation 
of such potential. 
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2. AI and the 17 SDGs

AI is the discipline within computer science or 
engineering that has the objective of the de-
velopment of computationally – i.e. non-bio-
logical – intelligent systems, taking human in-
telligence as a reference. In the same way that 
human intelligence is complex and diverse, 
there are many areas of knowledge within AI 
that aim to emulate specific aspects of human 
intelligence, such as computer vision, speech 
recognition, natural language processing, plan-
ning, reasoning, knowledge representation, 
learning theory and decision-making. 

Historically, there have been four views in the 
literature as to how to achieve AI or what AI 
means: (1) AI means acting humanly, i.e. act-
ing like a person – the Turing test is a classic 
example of such view of AI; (2) AI means think-
ing humanly, i.e. thinking like a person, which 
is the object of study of cognitive science; (3) 
AI means thinking rationally, i.e. modelling 
thinking as a logical process, where conclu-
sions are reached based on symbolic logic; and 
(4) AI means acting rationally, i.e. performing 
actions to achieve one’s goal, based on one’s 
understanding and beliefs about the world. 

In terms of how to build AI systems, there have 
been two basic schools of AI since its emergence 
in the 1950s: first, the top-down or symbolic-logic 
school, and second, the bottom-up or data-driven 
school. According to the symbolic-logic school, 
to achieve AI, human knowledge would be 
collected and codified, deriving new knowledge 
from such initial knowledge using the rules of 
logic. The methods in this school are based on 
symbolic representations of problems, logic and 
search. This approach to AI was the dominant 
paradigm from the birth of the discipline in the 
1950s until the late 1980s. The canonical ex-
ample of the top-down school are expert sys-
tems, which were the first successful example 
of commercialisation of AI systems. 

The methods developed in the bottom-up, 
data-driven school, are inspired from biology: 
biological intelligent beings learn from their 
interactions with their environment, from ex-
perience. Hence, bottom-up approaches to AI 
focus on developing methods that learn from 
data as opposed to modelling symbolic de-
scriptions of the environment. The canonical 
example of a bottom-up method are neural 
networks. 

Bottom-up, data-driven methods in AI have 
experienced an unprecedented exponential 
growth in the past 15 years mainly due to 
three factors:

 ȧ the existence of massive amounts of non-
structured data (referred to as ‘big data’) 
which is the result of both our interactions 
with the digital world and the increased 
digitisation of the physical world;

 ȧ the availability of large-scale computing at 
low cost, as a consequence of Moore’s law;

 ȧ the development of sophisticated machine 
learning algorithms, inspired by the neural 
networks from the 1950s, but significantly 
more complex, called deep neural networks 
or deep learning (LeCun et al., 2015), which 
have the flexibility and the power to learn 
from large-scale data by leveraging high 
performance computing. 

Because of these three factors, we have 
witnessed tremendous achievements in 
data-driven machine learning algorithms ap-
plied to numerous areas, including comput-
er vision, audio processing, natural language 
processing, time series analysis, recommen-
dations, reinforcement learning and control, 
robotics and uncertainty quantification. Thus, 
it should not come as a surprise that these 
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methods are at the core of most of the AI-en-
abled systems that we use in our phones, our 
homes, our cities and our cars.

The domains most likely to be disrupted, 
transformed and enriched by these new AI ap-
proaches are data-rich, challenges related to 
identifying patterns and trends in non-struc-
tured data (images, videos, audio, text, sensor 
data, etc.), challenges that require making pre-
dictions about future phenomena and/or would 
benefit from data-driven decisions. 

Thus, these advances are valuable to address 
many of the challenges related to the 17 SDGs. 
In fact, in recent years several research papers 
have been published (Vinueasa et al., 2018) and 
initiatives have been launched to identify projects 
that investigate the use of AI in the context of the 
17 SDGs. Examples of such initiatives include the 
SDG AI Repository managed by the UN’s Inter-
national Telecommunication Union (ITU) agency8; 
the database of the AI for Sustainable Develop-
ment Goals (AI4SDGs) Think Tank9 and the data-
base of the University of Oxford’s Research 
Initiative AIxSDGs10, which lists 108 projects.

But what are the concrete opportunities that 
AI offers in the context of the SDGs? How can 
AI methods help us to achieve such an ambi-
tious global agenda? What are the challenges 
associated with leveraging AI for social good? 

The following section provides an overview of 
the challenges and opportunities for AI in each 
of the SDGs, except SDG 17, which refers to the 
importance of establishing partnerships and 
collaborations across regions, countries and 
institutions in pursuit of all the goals by 2030. 
Therefore, it is not included in the discussion.

8 https://www.itu.int/en/ITU-T/AI/Pages/ai-repository.aspx
9 https://ai-for-sdgs.academy/about
10 https://www.aiforsdgs.org/
11 https://www.worldbank.org/en/topic/poverty/overview
12 E. O. of the President National Science and T. C. committee on technology. Preparing for the future of AI. https://obamawhite-

house.archives.gov/sites/default/fil es/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf, 2016.

SDG 1 – No poverty

After declining for 20 years, global extreme 
poverty rose again in 2020 due to a variety of 
factors, including the impact of the COVID-19 
pandemic and climate change11. The World 
Bank estimates that up to 1.9 billion people in 
the world today live below the societal poverty 
line, which combines the USD 1.9/day absolute 
poverty line with a country-dependent com-
ponent based on the median consumption or 
income in the country. Most of the poor live in 
rural areas and poverty is a long-lasting real-
ity in many parts of the world. However, ob-
taining granular, high-quality data on poverty 
to inform policy making is still a challenge. 

AI techniques have been used to automatically 
analyse satellite (Jean et al., 2016), mo-
bile (Syndsoy et al., 2016; Soto et al., 2011; 
Blumenstock and Cadamuro, 2015) or digital 
transaction and real state online advertise-
ments (Cruz et al., 2019) to automatically infer 
poverty or socio-economic levels in developing 
and developed countries. 

Beyond leveraging AI methods to assess 
poverty, AI-powered, evidence-based deci-
sion-support systems could inform public 
decisions relative to poverty eradication pro-
grammes both to measure the success of 
such programmes and to guide resource allo-
cation depending on the estimated current and 
predicted levels of poverty in different regions. 
Moreover, data-driven AI is emerging as a driver 
to improve the overall quality of life12. 
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SDG 2 – Zero hunger 

Hunger refers to the generalised lack of ac-
cess to food by a community or a population 
in a sustained manner. Hunger still prevails 
in many developing countries, and it is often 
exacerbated by extreme weather events (e.g. 
severe draughts), poverty and/or wars. The 
early detection of hunger is typically an effect-
ive strategy to prevent or mitigate it (Holley, 
2018). 

Weather (United States Agency for International 
Development, 2010), satellite, demographic 
(Quinn et al., 2010) and socio-economic (Okori 
and Obua, 2011) data have been analysed using 
AI techniques to make an early detection of hun-
ger in developing countries, such as Uganda. 
Other authors have used machine learning tech-
niques to predict food demand in areas impacted 
by natural disasters (Xiaoyan et al., 2010).

There are several examples where AI tech-
niques have been used to predict the yield of 
crops from climate and agriculture data (Gan-
dhi and Armstrong, 2016; Zhu et al., 2018), 
sometimes combined with satellite data (Badr 
et al., 2016). Invasive species and plagues 
have been automatically recognised in images 
by deep neural networks (Fedor et al., 2009; 
Mohanty et al., 2016) and machine learning 
techniques have been proposed to identify and 
recommend crops depending on the character-
istics of the soil (Kulkarni et al., 2018). 

Several international organisations, including UN 
agencies, the World Bank, NGOs (such as Mercy 
Corps, Save the Children and Oxfam) and data 
institutions (such as the UN Centre for Humani-
tarian Data, the Integrated Food Security Phase 
Classification, IPC, or the Famine Early Warn-
ing Systems Network, FEWS) have partnered in 
the Famine Action Mechanism (FAM)13, a global 

13 https://www.worldbank.org/en/programs/famine-early-action-mechanism
14 https://earthobservations.org/geoglam.php
15 https://irp-cdn.multiscreensite.com/be6d1d56/files/uploaded/SDSN%20Health%20Solutions.pdf, 2019.

initiative to end famine. FAM was launched in 
2018 and focuses on three data-driven areas 
of collaboration to anticipate and address food 
security crises: food security crisis risk analy-
sis, anticipatory and early action financing, and 
programming. The Group on Earth Observa-
tions Global Agricultural Monitoring Initiative 
(GEOGLAM)14 is an open community created 
to increase market transparency and improve 
food security by producing and sharing relevant, 
timely and actionable data on agricultural con-
ditions and outlooks of food production at dif-
ferent scales (national, regional and global). 

Finally, there are two emergent, relevant con-
cepts: precision agriculture (Zhang et al., 2002) 
and smart farming (Sundmaeker et al., 2016; 
Wolfert et al., 2017), which focus on leveraging 
data captured by a variety of pervasive sensors 
and state-of-the-art technology to optimise the 
yield of crops while preserving resources. Ac-
cording to the Food and Agriculture Organiza-
tion (FAO) (2017), smart farming refers to the 
use of modern digital technology – including 
internet-of-things sensors, autonomous drones 
(Faulkner and Cebul, 2014), robots to feed cat-
tle (Grobart, 2012) and AI techniques to analyse 
the data captured by the sensors – to improve 
agricultural production systems. The European 
Commission has established Horizon 2020 pro-
grammes to promote smart farming. 

SDG 3 – Good health  
and well-being 

Having good health is a human right and a key 
contributor to growth and prosperity15. The lev-
els of health and well-being in a population are 
a proxy indicator of the nation’s level of prog-
ress. Unfortunately, we are still far from achiev-
ing good health everywhere on the planet. 
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AI for public policy making during the COVID-19 
pandemic: the Valencian experience
In March 2020, the Valencian government created the Data Science against COVID-19 
taskforce, composed of over 20 volunteer scientists from several Valencian research 
institutions (universities and research centres), working on four areas to support the 
Government’s decision-making during the pandemic:

 ȧ large-scale human mobility modelling via the analysis of large-scale data derived 
from the mobile network infrastructure;

 ȧ computational epidemiological models to predict the evolution of the pandemic 
curve, not only under the current conditions but also under different scenarios of 
non-pharmaceutical interventions;

 ȧ machine learning-based predictive models of hospital and intensive care occupancy; 

 ȧ a large-scale, online citizen survey via the COVID-19 Impact Survey, which is one of 
the largest surveys in the world about COVID-19, with over 700 000 answers. 

The work of this taskforce has received national and international visibility and rec-
ognition, including winning first prize at the 500k XPRIZE Pandemic Response Chal-
lenge competition, sponsored by Cognizant. It is the first time that a team from Spain 
(ValenciaIA4COVID) has won an XPRIZE competition. As part of the XPRIZE challenge, 
the team developed a novel deep learning-based epidemiological model able to pre-
dict the number of COVID-19 cases in 236 countries and regions in the world and a 
non-pharmaceutical intervention prescriptor, recommending up to 10 different public 
policies that would have the optimal trade-off between the cost of the public policies 
and their impact on containing the number of COVID-19 cases. This work also received 
the best paper award at ECML-PKDD 2021. 

This initiative is an example of the use of AI for social good, by means of a collabor-
ation between academia and the scientific community, society at large (through the 
citizen survey) and a government to achieve evidence-driven decision-making.
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The intersection between data, AI and health is 
rich and full of opportunity, as highlighted by 
many authors (Singh, 2019; Guo and Li, 2018). 
Broadly speaking, AI methods are redefining 
healthcare from at least three perspectives. 

The first perspective is by accelerating the 
discovery and design of effective treatments 
and vaccines, enabling the prediction of ex-
pected results and side-effects, in addition to 
automating the discovery of new pharmaco-
logical compounds (Ong et al., 2020; Schneider, 
2018) and protein folding (Senior et al., 2020). 

The second is by assisting in clinical deci-
sion-making related to, e.g., the diagnosis of 
cancer (Esteva et al., 2017; Fauw et al., 2018), 
COVID-19 (Oh et al., 2020) or tuberculosis 
(Doshi et al., 2017) in radiological tests, pot-
entially providing expert feedback and diagno-
ses to patients where human medical experts 
might not be available; improving pregnancy, 
post-partum (Rodriguez et al., 2016; Poon et 
al., 2009) and infant care and thus preventing 
deaths (Malak et al., 2018; Adegbosin et al., 
2019); and predicting the efficacy of treat-
ments (Pham et al., 2017) or the probability of 
needing intensive care (Kaji et al., 2019). 

The third is by supporting policy-making relat-
ed to public health – including mental health 
(Walsh et al., 2017) and infectious diseases, 
such as malaria (Wasolowski et al., 2012), in-
fluenza (Kagashe et al., 2017), Ebola (Wasolo-
wski et al., 2014) and COVID-19 (Oliver et al., 
2020) – via the analysis of multi-dimensional 
data captured by the mobile network infra-
structure, social media platforms and pervasive 
sensors.

Moreover, the increased availability of wear-
able devices at affordable prices (e.g. activity 
wristbands, smartwatches, etc.) enables the 
collection of large-scale, longitudinal data 
about daily activities, sleep habits and physio-
logical signals, which, analysed via machine 

learning techniques, could be extremely valu-
able in the early diagnosis of disease and the 
realisation of personalised, preventive and pre-
dictive medicine (Clifton et al., 2013). 

In fact, precision (predictive, personalised, 
preventive) medicine will not be achievable 
without the use of AI techniques applied to 
genomic, behavioural, contextual (e.g. pollu-
tion, weather) and medical data (Collins and 
Varmus, 2015). 

On the negative side, in addition to numerous 
ethical and technical challenges discussed 
below, we need to consider that data-driven AI 
methods are at the core of the digital services 
and social media platforms that we use today, 
so they can personalise the user experience, 
recommend relevant content and increase en-
gagement. Unfortunately, these services, which 
are designed to maximise our engagement, 
could lead to an excessive (and possibly ad-
dictive) use by their users with potential nega-
tive consequences for our well-being (Zheng 
and Lee, 2016). 

SDG 4 – Quality education 

Education is a key pillar for sustainable de-
velopment and prosperity. While the world has 
made progress in reducing the education gap, 
particularly for women and girls, there are still 
today over 260 million children of primary and 
secondary school age worldwide who do not 
attend any school, 130 million children who 
can barely read and write despite attending 
school and 75 million children aged 3-18 years 
old who live in countries facing violence and 
war, needing educational support. 

AI has the potential to contribute to educa-
tion in several ways. First, by enabling a per-
sonalisation of the learning experience, mov-
ing from a generalist, one-to-many education 
model to an individual, one-to-one model. In-
telligent tutoring systems (ITS) via software 
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agents, chatbots or social robots can person-
alise both the content and the strategies used 
to teach students, to maximise their learning. 
In addition, AI-powered intelligent education-
al interfaces enable the early detection of 
students with physical or mental disabilities 
(David and Balakrishnan, 2010) and provide 
the necessary tools to help them to learn more 
effectively (Abdul Hamid et al., 2018). Second, 
data-driven AI methods are used to enable 
more efficient academic management (e.g. 
automatically create the schedules for teach-
ers, support teachers in grading, provide 24/7 
support via chatbots, etc.) and to evaluate the 
quality of the education (Nieto et al., 2019).

Conversely, the potential risks of the use of AI 
in education would need to be further studied. 
Such risks include the violation of privacy, the 
subliminal manipulation of the students’ be-
haviours via personalised algorithms, different 
kinds of discrimination and potential negative 
effects on the students’ physical and mental 
health along with their behavioural develop-
ment (Zanett et al., 2019). 

SDG 5 – Gender equality 

Gender equality is a fundamental human right. 
It is also a foundational element to achieving a 
more sustainable, peaceful and prosperous world. 
In recent decades, significant advances towards 
gender equality have taken place: today, more 
girls attend school and fewer girls are forced 
into early marriage, more women occupy leader-
ship positions and legislation is being approved 
to advance gender equality. Despite this prog-
ress, women continue to be underrepresented 
in leadership positions, one every five women 
and girls aged 15-49 reports having experi-
enced physical or psychological violence within a 
12-month period and discriminatory cultural and 
social norms and laws remain pervasive. 

16 https://www.unicef.org/reports/progress-on-drinking-water-sanitation-and-hygiene-2019

AI methods can be used to automatically 
identify gender bias (Feldman and Paeke, 
2021), analyse the role of women in meetings 
through speech recognition, natural language 
processing and conversation analysis and 
automatically identify differences in gender 
representation, coverage and gender biases in 
newspaper coverage or commercial films via 
text, image, video and speech analysis (Jang et 
al., 2019; Kagan et al., 2020). 

Data-driven AI decision-making systems are 
not exempt from limitations, including gender 
discrimination and bias, as later described in 
this chapter. Hence, while AI can help us better 
diagnose and fight against gender inequality, it 
might also contribute to perpetuating or even 
exacerbating pre-existing patterns of inequal-
ity. Thus, it is of paramount importance to 
ensure that the AI tools that we use provide 
non-discrimination guarantees.

SDG 6 – Clean water 
and sanitation 

Access to clean water and proper sanitation 
are necessary to ensure adequate living con-
ditions. However, according to a report by the 
World Health Organization (WHO) and the 
United Nations Children’s Fund (UNICEF)16, in 
2019 more than 785 million people did not 
have access to at least basic water services 
and more than 884 million people did not have 
access to clean, safe water to drink. Moreover, 
more than 2 000 million people worldwide did 
not have access to basic sanitation and ap-
proximately 3 000 million people lack proper 
facilities to safely wash their hands at home. 
Here, sub-Saharan Africa is the most affected 
region in the world with 75 % of the population 
lacking basic handwashing facilities. 
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The consequences of such statistics are daunt-
ing: annually there are 1 700 million cases 
of diarrhoea among children younger than 5 
years old, causing the death to 440 000 chil-
dren; 3 million cases of cholera resulting in 
95 000 deaths and 11 million cases of typhoid 
fever which cause 129 000 deaths. Parasitic 
worms found in contaminated soil and asso-
ciated with a lack of proper sanitation facili-
ties infect around 1 500 million people world-
wide. In addition, a lack of access to adequate 
sanitation facilities for girls reaching puberty 
makes them significantly more likely to miss 
school than boys. 

SDG 6 aims at achieving universal access to 
drinking water at affordable prices and to prop-
er sanitation services; improving the quality of 
water, reducing pollution; making an efficient 
and sustainable use of water resources, to be 
managed in an integrated manner; protecting 
and re-establishing water ecosystems and in-
creasing the international cooperation in the 
context of water and sanitation. 

Data-driven AI methods have been used to 
optimise and predict the efficacy of water 
desalination plants (Dargam et al., 2020), to 
predict groundwater levels in coastal aqui-
fers (Yoon et al., 2011) and/or their salinity 
(Sahoura et al., 2020), to model groundwater 
level changes in agricultural regions (Sahoo et 
al., 2017), to detect and track major sources 
of water contamination (Wu et al., 2021) – in-
cluding drinking water networks (Dogo et al., 
2019), to forecast wastewater quality indica-
tors (Granata et al., 2017), to automatically 
detect water leakage (Kang et al., 2018) and 
cyber-attacks (Chandy et al., 2017) in water 
distribution systems and hence avoid wasting 
water, to predict water consumption in cities 
and thus better anticipate demand (Brentan et 
al., 2017) and to forecast water levels in mul-
tiple temperate lakes (Zhu et al., 2020), which 
is a vital indicator of the health of the lake eco-
systems and their management. Precipitation 

and extreme water-related events which could 
lead to floods can also be modelled using 
state-of-the-art data-driven AI methods, as 
described below in the context of SDG 16 
(climate action). 

SDG 7 – Affordable and clean 
energy 

Access to affordable and clean energy is un-
doubtedly essential to progress, yet it is one 
of the biggest challenges that the world faces 
today. It is estimated that 13 % of the world’s 
population – mostly located in sub-Saharan 
Africa and India – does not have access to 
electricity. In 2016, 3 000 million people in 
the world depended on highly polluting fuels 
to perform basic, daily tasks, such as cooking. 
In addition to the environmental and climate 
impact, the burning of solid fuels (e.g. wood, 
charcoal, coal, dung and crop residues) poses a 
serious public health issue, as it fills the houses 
and huts with smoke that causes pneumonia, 
heart disease, lung cancer, stroke and chronic 
obstructive pulmonary disease. 

This SDG aims to achieve by 2030 universal 
access to modern and affordable energy, a 
significant increase in the production of renew-
able energy, double the world’s rate of energy 
efficiency, investment in R&D related to clean 
energy and investment in the necessary infra-
structure to provide modern and sustainable 
energy in developing economies. 

AI has a fundamental role to play in the con-
text of SDG 7. In fact, many of its ambitious 
goals will not be achievable without the help 
of data-driven AI techniques. Smart grids de-
pend on AI methods to, e.g., predict demand 
and optimise the maintenance and functioning 
of the grid (Raza and Khosravi, 2015), to sig-
nificantly increase the grid’s reliability and 
efficiency via the automatic detection of fail-
ures (Mishra and Rout, 2018) and cyberattacks 
(Karimipour et al., 2019) and the prediction of 
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load (Hosei and Hosein, 2017). Semi-autono-
mous or fully autonomous robots are and will 
be used to inspect and maintain renewable 
energy plants (Iqbal et al., 2019), such that 
they could be placed in remote or dangerous 
locations yet with optimal energy production 
prospects. 

The application of AI in the nuclear engineer-
ing domain has been limited to date. However, 
in recent years several authors have proposed 
using machine learning and deep neural net-
works to predict the behaviour of nuclear re-
actors, perform predictive maintenance of 
nuclear infrastructures or improve fire hazard 
models (Fernandez et al., 2017).

Finally, there are numerous examples of how 
data-driven AI methods are key enablers to 
creating efficient renewable energy (wind, 
solar, geothermal, hydro, ocean, bioenergy and 
hybrid) systems by providing accurate predic-
tions of the expected behaviour of the renew-
able energy source and hence enabling the 
optimisation of the energy generation systems 
(Jha et al., 2017). 

SDG 8 – Decent work 
and economic growth 

The creation of high-quality jobs is still a chal-
lenge in most countries in the world. While the 
global unemployment rate is estimated to be 
5.5 %, there are many countries in both the de-
veloping and the developed world where hav-
ing a job is no guarantee of being above the 
poverty line or having a decent life. 

AI is having and will have a profound impact in 
the labour market and economic growth. The 
adoption of AI will affect a wide range of pro-
fessions, including those that require high lev-
els of qualifications (Mitchell and Brynjolfsson, 
2017) in the medical (Barlow, 2016), finance 
(Dunis et al., 2016), legal and education (Woolf 
et al., 2013) sectors.

There are numerous studies that have analysed 
the impact of AI on the labour market, both in 
terms of the displacement of entire jobs (Frey 
and Osborne, 2017) or the automatisation of 
certain tasks within jobs (Arntz et al., 2016). 
Most authors concur in predicting a significant 
level of job or task displacements due to AI au-
tomatisation. According to Arntz et al. (2016), 
the percentage of jobs that are susceptible 
to being displaced by AI range from 6 % in 
South Korea to 59 % in Germany, with an aver-
age value for Europe between 45 % and 60 % 
(Bowles, 2014). This transformation of the job 
market could lead to an increase in the polarisa-
tion of labour (Autor et al., 2010) and migrations 
to urban centres, which would contribute to geo-
graphic and social inequality (Frank et al., 2018). 
At the same time, AI techniques have been used 
and will be used to help reduce inequalities, as 
explained in the SDG 10 section. 

SDG 9 – Industry, innovation 
and infrastructure 

Sustainable economic growth relies on the 
availability of high-quality infrastructure for, 
e.g., transport, energy, water supply and com-
munication and ambitious investments in in-
novation to contribute to prosperity, guarantee 
competitiveness and enable the ability to tackle 
future challenges. 

Data-driven AI techniques are particularly valu-
able for monitoring, analysing and predicting 
failures in existing infrastructure by, for example, 
analysing aerial images using deep learning and 
machine learning techniques (Bao et al., 2019; 
Rafiei and Adeli, 2017; Ren et al., 2020; Xu et 
al., 2019; Gopalakrishnan et al., 2017) or de-
tecting energy consumption anomalies and the 
production of pollutants in industry (Xu et al., 
2015) and the construction of infrastructure. 
Digital twins are increasingly used as a digital 
representation of the physical world, including 
digital twins to predict the behaviour of large 
infrastructure, such as bridges (Ye et al., 2019). 
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Another clear area of impact of AI related to 
SDG 9 are transportation systems, including 
the use of data-driven AI methods to predict 
and better regulate transport flows (Zhao et al., 
2019); Yao et al., 2019; Pan et al., 2019; Li et 
al., 2017), to assist in planning more efficient 
public transport routes (Saracco, 2018) and to 
deploy autonomous vehicles for passenger and 
freight land (Niestadt, 2019), rail (Schut and 
Wisniewski, 2015) or even aerial transport. 

SDG 10 – Reduced inequality 

In the last 25 years, total global inequality (i.e. 
the inequality across all individuals in the world) 
has been declining17, meaning that the average 
incomes in developing economies are increasing 
at a faster rate than those in developed coun-
tries. However, inequality within countries has 
worsened, such that 71 % of the world’s popu-
lation live in countries where inequality has in-
creased. With the 21st century, we are witnessing 
an unprecedented concentration of income and 
wealth in the hands of the very few: in 2018, the 
26 richest people in the world had as much wealth 
as the bottom half of the world’s population. 

While AI has been attributed to contributing to 
inequality18 due to algorithmic bias and the 
‘winner-takes-all’ phenomenon associated with 
technological development, data-driven AI meth-
ods can be used to reduce inequality. For ex-
ample, AI algorithms can improve child welfare 
systems by automatically identifying when chil-
dren might be in need of welfare (Schwartz et al., 
2017), can foster financial inclusion by building 
alternative credit scores (San Pedro et al., 2015) 
or by shedding light on the factors for mobile 
money adoption (Centellegher et al., 2018), and 
can drive measurable positive change in the lives 
of minorities and vulnerable groups19 and ensure 
fair decision-making (Zemel et al., 2013). 

17 https://openknowledge.worldbank.org/bitstream/handle/10986/25078/9781464809583.pdf?sequence=24&isAllowed=y
18 https://www.cs.dartmouth.edu/~ccpalmer/teaching/cs89/Resources/Papers/AIs%20White%20Guy%20Problem%20-%20NYT.pdf
19 https://d4bl.org/about.html
20 https://www.unfpa.org/urbanization

SDG 11 – Sustainable cities 
and communities 

For the past few centuries, the world has experi-
enced a process of urbanisation, that is, the dis-
placement of the population from rural to urban 
areas, leading to the creation and growth of 
towns and cities. More than half of the world’s 
population today lives in urban areas and by 
2030 it is expected that this figure will raise 
to about 5 000 million people20. People tend to 
migrate from rural to urban areas looking for 
a better life and more opportunities to prosper. 
Indeed, cities have the potential to contribute to 
higher levels of well-being, education, resource 
efficiency and economic growth. However, ur-
banisation is not exempt from challenges, in-
cluding inequality and poverty, overcrowding, 
criminality, energy consumption and environ-
mental impact, pollution, waste generation and 
lack of appropriate living standards.

Data-driven AI techniques have been used to 
improve urban planning by estimating urban 
density from aerial images (Lu et al., 2010), in-
forming decisions related to road (Krol, 2016) 
and public transport (Mukai et al., 2008; Froeh-
lich et al., 2009), planning traffic, detecting 
traffic incidents (Dia and Rose, 1997; Dia, 2001) 
and predicting future traffic conditions (Huang 
et al., 2014; More et al., 2016) or mobility needs 
(Held, 2018). 

Urban intelligent transport systems are only pos-
sible thanks to data-driven AI methods, which 
lead to safer, more inclusive and efficient public 
transport (Liao et al., 2018; Yao et al., 2018). 
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AI pervades modern commercial vehicles, 
which include AI systems to increase safety 
in intersections, to detect incoming traffic and 
pedestrians (Enzweiler and Gavrila, 2009), to 
avoid collisions by, e.g., detecting inattentive 
drivers (Mandal et al., 2017), predicting driver 
manoeuvres (Oliver and Pentland, 2000; Jain 
et al., 2016), predicting pedestrian behaviour 
(Wu et al., 2018) or warning drivers when in-
vading other lanes (Kim et al., 2016), and to 
assist drivers in adverse weather conditions 
(Tuma et al., 2020). 

Smart cities depend on AI. There are numerous 
initiatives worldwide to realise the vision of 
achieving smart cities, including projects that 
analyse data captured by internet-of-things 
devices to measure and optimise energy con-
sumption, recycling levels, pollution and re-
fuse collection in cities (see, e.g., the Urbo21 
project by Telefonica). Urban safety is a critic-
al area that contributes to the quality of life 
in cities. Machine learning methods have been 
applied to automatically detect and predict 
crime hotspots in cities (Bogomolov et al., 
2014). The World Council on City Data pro-
vides the Open City Data Portal22, which en-
ables comparison of different metrics across 
multiple cities.

The newly created Urban AI23 is a think tank 
that proposes ethical modes of governance 
and sustainable uses of AI in the context of 
cities. Its focus is to develop and deploy AI 
systems that embrace the diversity of cul-
tures in the world, to contribute to making 
cities sustainable and vibrant and to preserve 
our social contract. 

21 https://smartcity.telefonica.com
22 https://www.dataforcities.org/data-portal
23 https://urbanai.fr/
24 https://www.unep.org/thinkeatsave/get-informed/worldwide-food-waste (retrieved in July 2021)

SDG 12 – Responsible 
consumption and production 

This SDG aims at making an efficient use of 
energy and resources, improving access to basic 
services, building and maintaining infrastructures 
that are environmentally respectful and creating 
well-paid jobs with good working conditions. 

It is related to many of the other SDGs, includ-
ing the goals related to poverty, hunger, gender 
equality, clean water and sanitation, affordable 
and clean energy, decent work, industry innov-
ation, climate action and reduced inequality. 

Thus, only areas of AI impact that complement 
those described in the sections corresponding 
to the rest of SDGs are highlighted here. 

In terms of contributing to a sustainable and 
responsible use of natural resources, beyond 
the impact of AI in the context of renewable 
energy and agriculture, data-driven AI methods 
can be used to forecast consumption patterns 
yielding more efficient production systems with 
minimal excess production, to automatically 
create land-use maps to provide a more ac-
curate picture of the state and actual use of 
natural resources (Talukdar et al., 2020) or 
to estimate the impact of logging in forests 
to optimise the logging processes and ensure 
their sustainability (Hethcoat et al., 2019). 

According to the UN Environment Pro-
gramme24, approximately one third of the food 
produced in the world for human consumption 
is wasted or gets lost, accounting for almost 
USD 1 000 million globally. Hence, reducing 
food waste is an important endeavour. 
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Household waste can be minimised thanks 
to machine learning methods applied to in-
ternet-of-things captured data (Dubey et 
al., 2020) and the factors that determine 
household food waste behaviours can be 
automatically modelled and understood via 
data-driven AI methods (Setti et al., 2016). Re-
garding other types of waste generation, ma-
chine learning methods can be applied to, for 
example, predicting solid waste in municipal-
ities and hence enabling more efficient waste 
planning (Kannangara et al., 2018).

AI enables smart production systems (Petrillo 
et al., 2020) that, e.g., minimise energy con-
sumption, anticipate demand, detect manufac-
turing failures, automate tasks and perform 
systematic evaluations to detect areas of 
improvement. Digital twins can also be used 
to optimise production systems via machine 
learning methods (Min et al., 2019). 

Finally, socially responsible consumption and 
disposal behaviour can be inferred auto-
matically via machine learning algorithms (Song 
et al., 2018), This information could be used to 
foster and reinforce consumer behaviours that 
contribute to sustainability. 

SDG 13 – Climate action 

The potential of AI to help address the climate 
emergency is unquestionable (Rolnick et al., 
2022). In fact, we will not be able to combat 
climate change without the help of AI. 

Data-driven AI methods are used to model cli-
mate and weather, identify patterns and make 
accurate predictions based on the analysis of 
multi-dimensional weather and climate datasets 
(Haidar and Verma, 2018; Ham et al., 2019). 

25 http://aidr.qcri.org

Deep learning models have been used to repre-
sent sub-grid processes in climate models (Rasp 
et al., 2018), to predict global temperature chan-
ges (Ise and Oba, 2019) and weather (Weyn et 
al., 2020) and to model weather phenomena, 
such as rainfall (Sonderby et al., 2020). In addi-
tion to being used to build more accurate climate 
models and predictions, AI methods can also 
be applied to improve state-of-the-art weather 
modelling systems by enabling, e.g., the separ-
ation of noise in climate observations (Barnes et 
al., 2019) or the automatic labelling of climate 
data (Chattopadhyay et al., 2020).

Extreme weather events are increasing in fre-
quency and intensity due to climate change. 
AI has also proven to be a valuable ally to 
predict extreme weather events and their im-
pacts, such as heavy rain (Lee et al., 2020), hail 
(Gagne II et al., 2019), wildfires (Radke et al., 
2019), floods (Pastor-Escuredo et al., 2014) 
and earthquakes (Wang et al., 2020) and to 
enable a more efficient, prompt response to 
natural disasters. Autonomous drones have 
been used to monitor heat and prevent fires 
(Allison et al., 2016) and to search for survivors 
in floods and earthquakes (Arntz et al., 2016). 
In this domain, the AI for Disaster Response 
(IADR)25 project at Qatar Computing Research 
Institute (QCRI) provides a free online tool that 
analyses social media messages related to 
emergencies, humanitarian crises and disas-
ters. It uses machine learning to tag up thou-
sands of messages per minute automatically, 
acting as an early warning system. 

Beyond the direct application of AI techniques 
to model and predict climate, AI methods may 
be applied to industries or sectors that have a 
negative environmental impact to enable the 
reduction of greenhouse gas (GHG) emissions. 
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According to a report commissioned by Micro-
soft from PwC26, the use of AI in environment-
ally related use cases could contribute up to 
USD 5.2 billion to the global economy by 2030 
while reducing GHG emissions by 4 %, which is 
equivalent to the 2030 estimated annual emis-
sions of Japan, Canada and Australia combined. 

Examples of such scenarios include using AI 
methods to yield more efficient energy gener-
ation – particularly in highly polluting sectors, 
such as the petrochemical sector (Han et al., 
2019) – and to better manage the electric grid 
by means of accurate energy consumption fore-
casts (Almalaq and Edwards, 2017). 

Data-driven AI approaches could also be used 
to accurately predict both carbon emissions and 
the factors contributing to them (Huang et al., 
2019), thus enabling prompt action.

Moreover, there are major private and public 
institutional programmes aimed at exploring 
the use of AI to help combat climate change. 
In Europe, the Cordis database of funded 
research reveals over 100 funded projects 
related to AI and climate change, covering 
topics that range from the detection of ex-
treme events to using AI to accelerating the 
transition of cities to carbon neutrality by 
means of AI. The European Space Agency has 
launched the Digital Twin Earth27 to acceler-
ate the identification of solutions to predict 
the impact of climate change. The European 
Lab for Learning and Intelligent Systems 
(ELLIS), one of Europe’s leading AI associ-
ations, has launched a research programme 
on machine learning for Earth and climate sci-
ences that aims to ‘model and understand the 
Earth system via machine learning methods’. 

26 https://www.pwc.co.uk/sustainability-climate-change/assets/pdf/how-ai-can-enable-a-sustainable-future.pdf
27 https://www.esa.int/ESA_Multimedia/Images/2020/09/Digital_Twin_Earth
28 https://www.elementai.com/ai-for-climate
29 https://www.microsoft.com/en-us/ai/ai-for-earth
30 https://www.cnet.com/news/facebook-plans-to-use-ai-to-help-fight-climate-change/
31 https://ai.google/social-good/impact-challenge/

In the private sector, most technology com-
panies have deployed initiatives aimed at 
using AI to help combat climate change. 

For example, the Canadian AI company Ele-
mentAI has launched a climate programme28 
as a cross-company initiative to support pri-
vate and public sector efforts that tackle the 
climate crisis and help to build a sustainable 
and resilient future; Microsoft’s AI for Earth in-
itiative29 is a 5-year USD 50 million endeav-
our to put Microsoft’s cloud and AI tools in 
the hands of those working to solve global 
environmental challenges; in October 2020, 
Facebook announced a partnership with Car-
negie Mellon University30 to assist scientists 
in using AI tools to develop renewable energy 
and combat climate change; and Google’s ‘AI 
for social good’ programme recently issued an 
open call31 to organisations around the world 
to submit their ideas for how they could 
use AI to help address societal challenges. 
Among the 20 organisations that are sup-
ported by Google, there are projects related 
to using AI to estimate emissions of fossil 
fuel in power plants. 

Conversely, data-driven AI systems have a 
significant CO2 footprint contribution which 
would need to be systematically measured and 
mitigated, as described in the next section.
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SDG 14 and SDG 15 – Life below 
water and life on land

Healthy oceans, seas and land are essential 
to ensure the necessary living conditions on 
our planet. However, the quality of the waters 
and terrestrial ecosystems has significantly 
worsened in the past decades. 

Regarding waters, the acidity of the oceans 
– which is key for climate regulation and to 
sustain entire ecosystems – is expected to in-
crease by 100 % to 150 % by the end of the 
21st century, according to the current trends. 
Moreover, each year at least 14 million tons of 
plastic end up in the oceans32, which is 80 % 
of all marine debris, threatening life in the 
oceans, human health, food safety and quality 
and contributing to climate change. In terms 
of land, each year tens of millions of hectares 
of forests and natural terrestrial environments 
disappear because of logging, wildfires, desert-
ification due to climate change and human 
intervention. 

Advances in computer vision (object detec-
tion in images and videos, image classification) 
together with other data-driven AI methods can 
be used to automatically monitor the quality of 
our oceans and our land. 

For example, deep learning methods have been 
used to estimate the volume of plastic debris 
in coastal areas (Martin et al., 2018), detect oil 
spills (Jiao et al., 2019) or estimate the CO2 
flux (which plays an important role in ocean 
acidification) in the oceans by analysing aerial 
images (Chen et al., 2019). 

32 https://www.iucn.org/resources/issues-briefs/marine-plastics

Similarly, deforestation (de Bem et al., 2020), 
forest quality (Zhao et al., 2019), aboveground 
biomass (Madhab Ghosh and Behera, 2018) 
and the risk of wildfires (Oulad Sayad et al., 
2019) can be automatically estimated via 
deep neural networks applied on aerial images 
alone or combined with other data sources. 

Illegal wildlife trade can be automatically detected 
by analysing social media data via machine learn-
ing methods (Di Minin et al., 2019) and wildlife 
species can be automatically classified using deep 
neural networks on aerial or motion-activated 
camera images (Tabak et al., 2019).

AI also enables smart fishing, which com-
bats overfishing and fosters sustainable fish-
ing by the automatic classification of species, 
biomass estimation, prediction of the quality 
of the water and of the behaviours of aqua-
tic animals; together with precision agricul-
ture and smart farming, as described in the 
SDG 2 section. 

SDG 16 – Peace, justice and 
strong institutions

Conflicts, insecurity, weak institutions and lim-
ited access to justice are clear barriers for sus-
tainable development. While overall the world 
population is healthier, better connected and 
wealthier than ever before, there are numer-
ous places in the world where people’s lives 
are severely impacted by wars and insecurity, 
a lack of access to fair justice systems and the 
violation of human rights. 
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According to the International Committee of 
the Red Cross (ICRC)33, it was estimated that 
in 2018 roughly 2 000 million people in the 
world were affected by conflict, violence or 
fragility and by 2030 these people will most 
likely endure extreme-poverty living conditions. 
Approximately 120 million people worldwide 
depend on humanitarian aid. A recent report 
by the UN refugee agency (UNHCR) estimates 
that a record number of 80 million people in 
the world were displaced in 2020 by wars and 
violence, including almost 30 million refugees. 

Data-driven AI techniques can be used to ac-
celerate and promote peace, safety, justice and 
stronger institutions. For example, institution-
al corruption can be detected automatically by 
data-driven machine learning algorithms applied 
to financial transactions (Chang-Tien and Sir-
iat, 2004; West and Bhattacharya, 2016; Hajek 
and Henriques, 2017), public tender processes 
(Lismont et al., 2018) and government corruption 
(Adam and Fazekas, 2018). In addition, institu-
tions may significantly increase their efficiency by 
applying AI techniques that enable the complete 
or partial automatisation of administrative tasks 
and processes (Etscheid, 2019).

33 https://www.icrc.org/en/document/global-trends-war-and-their-humanitarian-impacts-0

Mathematical tools have been used to detect 
and predict crime for decades, and today many 
of such techniques include data-driven AI meth-
ods. Machine learning methods can be used to 
identify illegal drug trafficking (Baveja et al., 
1997; Li et al., 2019) and crime hotspots in cit-
ies (Bogomolov et al., 2014); and semantic and 
natural language processing techniques have 
been applied to social media content to detect 
extremist behaviours (Johansson et al., 2017). 

Without a doubt, the domain where AI is playing 
a crucial role is in the detection and prevention 
of cybercrime (Siddiqui et al., 2018), which, in-
creasingly leverages AI methods as well. 
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3. Limitations and barriers

As previously described, the opportunities for 
data-driven AI methods to help us better meas-
ure and accelerate the achievement of the SDGs 
are paramount. Data- or evidence-informed de-
cision-support systems, where machine-learn-
ing algorithms play a central role, have been 
referred to by some authors as ‘human AI’ sys-
tems (Letouze and Pentland, 2018). The concept 
of human AI systems is aligned with, but broad-
er than, the ‘human-centric AI’ approach adopt-
ed by the European Commission. 

Human-centric AI refers to designing and de-
ploying AI systems that are aligned with core 
human values. Human AI systems add to this 
concept a vision where humans – alone or 
supported by AI systems – can make more in-
formed, evidence-based decisions thanks to AI, 
supporting behaviours and decisions that are 
likely to yield positive outcomes while discour-
aging those that would not.

However, despite this immense opportunity, to-
day’s reality is far from this vision. To date, there 
have been few successful examples of real-world 
systems which systematically leverage large-
scale data and AI methods to support humans 
in making better decisions for the public good. 
More than a decade into the (big) data revolu-
tion and half a decade into the 17 SDGs, major 
barriers remain, including difficulties related to 
the access and analysis of valuable data, which 
in many cases are privately held. In addition, 
there is lack of well-defined ethical principles, 
potential legal and regulatory barriers, technical 
limitations, competing commercial interests and 
the non-negligible carbon footprint of today data 
and computation-greedy AI systems. 

In this context, there are five types of challenges 
and barriers that should be considered to ensure 
that AI is positively used for sustainable develop-
ment in a safe and ethical manner. Most of these 
barriers are extensively described in (Letouze et 
al., 2019), a summary of which is presented next. 
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Political and regulatory challenges 

The use of data-driven AI methods to sup-
port the achievement of the 17 SDGs would 
typically require the collaboration of three 
groups of actors: private organisations, 
public institutions and citizens. These three 
parties have potentially conflicting interests, 
constraints and priorities. 

Thus, tackling barriers in this political dimension 
requires striking a balance between the private, 
public (e.g. governments) and individual interests, 
which implies understanding their underlying 
dynamics (Letouze et al., 2015).

The first group of stakeholders are private or-
ganisations, which in most legal frameworks are 
the legal owners or custodians of a significant 
portion of the data of interest, such as mobile 
network, financial transaction, satellite, energy 
consumption, employment or social media data. 

The second group of stakeholders consists 
of the institutions that require access to the 
data to derive meaningful insights from it in 
the context of one or more of the 17 SDGs. 
Such institutions could be governmental – e.g. 
ministries, regional or local governments and 
national statistical offices (NSOs), academia 
or civil society organisations. In the case of 
NSOs, there is a strong movement related to 
using non-traditional data sources to com-
pute official statistics, for example to esti-
mate population density or poverty in a more 
efficient and frequent manner. However, there 
are very few examples of such a use in a sys-
tematic manner. While the potential value of 
data to help NSOs to build a more accurate 
picture of reality is clear, appropriate con-
sultation and technological and governance 
safeguards are of critical importance to mini-

34 https://www.elconfidencial.com/tecnologia/2019-10-29/ine-operadoras-recopilacion-datos-moviles-protec-
cion-leyes_2304120/

35 https://infocoronavirus.gva.es/es/grup-de-ciencies-de-dades-del-covid-19-de-la-comunitat-valenciana
36 https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1623335154975&uri=CELEX%3A52021PC0206

mise the risks related to potentially breaking 
the citizens’ trust, alienating private compan-
ies, breaching individual or group privacy and/
or impacting the reputation of the institutions 
involved, particularly if the use of the data 
yields unintended negative consequences. 

An example of reputational impact is the 
negative press received by a project launched 
by the Spanish National Statistics Institute, 
where they analysed aggregate insights de-
rived from mobile network data from the three 
largest telcos in Spain without the knowledge 
or explicit consent of mobile users34. 

Incidentally, the project later became instru-
mental during the COVID-19 pandemic as it 
enabled teams of experts, working in collab-
oration with Spanish policy-makers, to model 
large-scale human mobility35 and thus meas-
ure the compliance and impact of the confine-
ment measures on the population’s behaviour 
and the spread of COVID-19.

Another barrier in this regard relates to a poten-
tial lack of continuity of the projects, particular-
ly if there are no guarantees that the necessary 
data and/or resources will be available over time. 
Specific regulations and multi-year partnerships 
could help address these concerns.

Finally, there are the individuals whose data 
is already analysed for many (commercial) 
purposes, in principle with their consent but 
possibly – or probably – not with their under-
standing. Key principles and rights – such as 
fairness, transparency, autonomy, veracity, 
reproducibility, reliability, control and privacy 
– would need to be demonstrably preserved. 
In Europe, the new proposal for a regulation 
on AI36 addresses such principles and rights. It 
is a pioneering example of a legal framework 
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on AI, formulating a risk-based regulation that 
positions Europe in a leading role globally with 
a human-centric approach.

Given the evident monetary value of the data, 
many authors and projects have proposed the 
creation of personal data markets (Staiano et 
al., 2014), where individuals would have control 
over their own data and decide whom to share it 
with, for which purposes and at what cost.

In terms of data privacy, the European General 
Data Protection Regulation (GDPR) and ePrivacy 
Directive place a premium on obtaining consent 
from users and require data controllers to im-
plement the necessary measures to allow users 
to know and keep track of which data and for 
which purposes is being captured. Note that the 
GDPR allows for the lawful processing and shar-
ing of privately held data in certain use cases, 
including the computation of statistics that 
are no longer considered personal data, which 
enables the analysis of data for research and 
policymaking purposes without requiring con-
sent. Ideally, data-centric initiatives for sustain-
able development would be opted out by default 
(as opposed to opted in) and should be opted 
out at any time with ease by users, regardless 
of the intended purpose. A key challenge in this 
regard concerns obtaining such user consent: 
data subjects would need to be convinced that 
it is not only safe, but also in their interests to 
agree to make their data available for the pur-
poses of public good – either by opting in or not 
opting out. Given concerns expressed in many 
countries, significant efforts still need to be 
undertaken to show evidence of the value – i.e. 
the positive social impact – that would result 
from the data analysis and to ensure that the 
technology and the methods behind it are sound 
and safe to generate public trust. 

Thus, the next set of challenges concern devel-
oping the necessary technology and science to 
enable turning data into reliable, accurate and 
actionable knowledge.

Technological and scientific  
challenges

As previously illustrated, data-driven AI meth-
ods have tremendous potential to positively 
contribute to the achievement of the 17 SDGs. 
However, they are not exempt from technical 
limitations and risks that could yield negative 
(un)intended consequences impacting the lives 
of millions of people. 

A particularly important type of risks concerns 
the computational violation of individual pri-
vacy that would result from the analysis of data 
via data-driven AI methods, even if the data is 
fully anonymised. Several research works have 
shown that human individual behaviours are 
unique. Thus, it is possible to de-identify an 
individual even when using anonymised and 
coarsened data (Blondel et al., 2013). Addition-
nal research efforts have focused on under-
standing the limits of human privacy and how 
it could be protected (Rocher et al., 2019). How-
ever, according to the current state-of-the-art, 
anonymising personal data is not sufficient to 
ensure the protection of individual privacy.

Differential privacy (Dwork and Roth, 2014) is a 
promising technical approach to preserving pri-
vacy. It consists of performing a statistical an-
alysis of the datasets that may contain personal 
data, such that when observing the output of 
the data analysis, it is impossible to determine 
whether any specific individual’s data was includ-
ed or not in the original dataset. The behaviour 
of an algorithm applied to a differentially private 
dataset is guaranteed not to change when an 
individual is present or not in the dataset. This 
guarantee holds for any individual and for any 
dataset. Hence, regardless of the specific details 
of an individual’s data (even if such an individual 
is an outlier), the guarantee of differential privacy 
should still hold. 

Beyond privacy, there are additional tech-
nical and scientific challenges related to the 
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analysis of data via AI methods that need to 
be addressed, including: the frequent lack of 
ground truth37 that would enable the proper 
validation of supervised, data-driven AI mod-
els applied to tackle the 17 SDGs; difficulties 
with real-time access and analysis of the data, 
despite the fact that in many impactful use 
cases within the SDGs real-time access would 
be imperative (e.g. helping in the early detec-
tion of pandemics; predicting a natural disas-
ter or supporting an immediate, proportionate 
response to natural disasters or emergencies, 
etc.); complexities derived from having to 
combine datasets from different sources; the 
difficulty of inferring causality – but rather 
identifying correlations – with the implications 
that this limitation may have for policy- and 
decision-making; the potential lack of repre-
sentativeness of the available data, its gener-
alisation capabilities and inherent biases; the 
lack of certification standards to guarantee the 
quality of the algorithms applied to the data, 
including non-discrimination guarantees; lim-
ited transparency, explainability and interpret-
ability of complex machine-learning (notably 
deep learning-based) algorithms that might 
be applied to tackle a certain SDG; questions 
about the quality and veracity of the data; and 
difficulties in ensuring the reproducibility of re-
sults as they heavily depend on the data used 
to train the AI models and the parameter setting 
using when training.

Further technical challenges derive from the 
lack of the necessary technological infra-
structure and human capacities to system-
atically store, analyse and effectively apply 
the insights derived from the data analysis. 

Thus, appropriate investments in technical 
infrastructure and human resources are neces-
sary to successfully realise the potential that 
data-driven AI methods have in the context of 

37 Ground truth refers to data obtained by direct observation (i.e. empirical evidence) as opposed to obtained by inference  
(e.g. by a machine learning algorithm). In supervised and semi-supervised machine learning, ground truth is needed to train 
and validate the models.

the 17 SDGs. Importantly, such resources would 
need to be allocated prior to the inception of 
any project. Given that the underlying reality is 
extremely complex and dynamic, projects would 
need multi-disciplinary teams of experts, includ-
ing local talent, devoted fully to the projects on 
a continuous basis and located in the countries/
regions where the projects are deployed.

Many of the scenarios where AI could enable 
and accelerate the achievement of the SDGs 
are in areas of consequential importance in 
people’s lives, such as healthcare, education or 
immigration. Thus, the third critical set of bar-
riers to overcome relate to the governance and 
ethical challenges derived from using data-driv-
en methods to support human decision-making. 

Governance and ethical challenges

Numerous governance challenges and ethical 
dilemmas emerge when applying data-driven AI 
methods to support decision-making processes 
and systems with impact on the lives of millions 
of people. 

In this context, the ‘first, do no harm’ principle used 
in humanitarian scenarios is particularly relevant. 
Today, we have a much better understanding of 
the risks – even in the case of well-intentioned 
projects – that AI poses to human autonomy, pri-
vacy, equality, dignity, fairness and transparency 
than we did a decade ago. How can we be sure 
that applying AI to support the achievement of 
the 17 SDGs will do no harm? Will data-driven 
decisions used in this context be outside of our 
control? Who is accountable for such decisions, 
particularly in cases where they may be the re-
sult of analysing multiple datasets by complex 
software and social systems developed by poten-
tially different parties? Will these systems include 
the necessary security mechanisms to prevent 
cyberattacks? What about the malicious use of 
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the data to serve the interests of non-democratic 
governments or organised crime? These are com-
plex questions to tackle. Thus, ethical principles 
and standards of governance for data-driven in-
itiatives for public good need to be both clearly 
defined and meticulously complied with. 

In the past decade, many proposals have been 
published related to the ethical guidelines and 
principles to apply to the broad use of AI in so-
ciety. Such proposals include the principles of 
the Menlo Report (Dittrich and Kenneally, 2012); 
the ethical principles included in the national 

38 OECD, OECD Principles on AI, OECD, Paris, France, 2019.
39 The Institute of Electrical and Electronics Engineers, Ethically Aligned Design, IEEE, Piscataway, NJ.
40 Association for Computing Machinery, Code of Ethics and Professional Conduct, ACM, New York, NY, 2018.

AI strategies of over 50 countries in the world; 
the report by the European Commission for the 
development of trustworthy AI (European Com-
mission, 2019); the OECD38 principles for the de-
velopment of AI; and the ethics in AI initiatives 
within professional organisations, such as the 
Institute of Electrical and Electronics Engineers 
(IEEE)39 and the Association for Computing Ma-
chinery (ACM)40. Most of the previously proposed 
principles might be grouped using the FATEN 
(Oliver, 2019) acronym, which is an extension 
of the four basic principles of medical ethics 
(Gillon, 1994). 

Figure 11-2: The FATEN principles



CH
A

PTER 11
687

F for fairness, i.e. without discriminating. 
Data-driven AI systems might discriminate for 
several reasons, including biases in the data 
used to train the algorithms, an inappropriate 
choice of an algorithm or model for the prob-
lem at hand, and a biased interpretation of 
the results. In the past 5 years, many highly 
impactful cases of algorithmic discrimination 
in social good areas have been made public, 
such as in the areas of criminal justice (Ang-
win et al., 2016), credit granting (Blattner and 
Nelson, 2021), human resources and hiring41, 
education42 and healthcare (Ledford, 2019). The 
detection and measurement of algorithmic bias 
and the development of fair machine-learning 
algorithms are fertile areas of research, as illus-
trated by the newly created ACM Conference 
on Fairness, Accountability and Transparency 
(ACM FAccT)43, the ELLIS research programme 
on human-centric machine learning44 or the 
newly created Institute of Humanity-centric 
AI45 in Spain, which is one of the 34 ELLIS units 
launched since December of 2019.

A for autonomy, accountability and intelli-
gence augmentation. The principle of auton-
omy is at the core of Western ethics. According 
to this principle, every person should be able to 
freely choose their own thoughts and actions. 
However, using data-driven AI methods today 
we can build computational models of our per-
sonalities, interests, tastes, needs, strengths/
weaknesses and behaviour that could be – and 
probably are – used to subliminally influence our 
decisions, choices and actions. 

41 https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-
showed-bias-against-women-idUSKCN1MK08G (retrieved in July 2021)

42 https://www.brookings.edu/blog/the-avenue/2019/09/26/ai-is-coming-to-schools-and-if-were-not-careful-so-will-its-bias-
es/ (retrieved in July 2021)

43 https://facctconference.org/
44 https://ellis.eu/programs/human-centric-machine-learning
45 https://ellisalicante.org

Thus, we should ensure that AI systems that 
have a direct or indirect impact on people’s 
lives always respect the principles of human au-
tonomy and dignity. The letter A in FATEN also 
stands for accountability, i.e. having clarity with 
respect to the attribution of responsibility related 
to the consequences of using AI methods. 

Finally, A stands for intelligence augmentation 
– rather than replacement: AI systems should 
be used to support and augment human deci-
sion-making and not to replace humans alto-
gether. This view is fully aligned with the previ-
ously described human AI concept. 

T for trust and transparency. Trust is a fun-
damental pillar in our relationships, not only with 
other humans but also with/between institutions. 
Trust is typically established in the context of a 
specific purpose. We might trust an institution or 
an individual to be custodians of our money, but 
not necessarily of our children, for example. Trust 
emerges when three conditions are met:

 ȧ competence, i.e. the ability to successfully 
carry out the committed task;

 ȧ reliability, i.e. sustained competence over time;

 ȧ honesty and transparency. Hence, the T in 
FATEN is also for transparency. 

A data-driven decision-making system is trans-
parent when non-experts can observe it and 
easily understand it. Data-driven decision-mak-
ing systems might not be transparent for at 
least three reasons (Burnell, 2016):

 ȧ intentionally, to protect the intellectual 
property of the system’s creators;
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 ȧ due to the digital illiteracy of their users, 
which prevents them from understanding 
how the models work;

 ȧ intrinsically, given that certain data-
driven AI approaches – particularly deep 
learning methods – are extremely complex 
and difficult to interpret. 

Transparent, interpretable and explainable AI 
models are necessary in most of the use cases 
related to the SDGs.

E for bEneficence and equality. The principle 
of bEneficence refers to maximising the positive 
impact in the use of data-driven decision-mak-
ing algorithms with sustainability, diversity and 
veracity. We cannot obviate the environmental 
cost of technological development, particular-
ly when it comes to AI algorithms, given their 
need for large amounts of data to learn from 
and massive amounts of computation needed 
to process and be trained by such data. As this 
is a fundamental challenge, it is described later 
in more detail.

Diversity is also of paramount importance, from 
at least two perspectives. First, by ensuring that 
the teams developing data-driven AI systems 
that are used for sustainable development are 
diverse, which is not the case today. Diversity 
is needed to maximise the probability of find-
ing innovative solutions to the immense chal-
lenges that we face – as diverse teams tend to 
be more innovative than non-diverse teams46 – 
and of developing inclusive solutions that would 
be relevant in the communities where they will 
be deployed. Second, by incorporating diversity 
criteria into the algorithms we design, we can 
minimise the prevalence of filter bubbles and 
echo-chamber effects (Geschke et al., 2019) 
which might contribute – at least partially – to 
the polarisation of public opinion.

46 https://www.forbes.com/sites/forbesinsights/2020/01/15/diversity-confirmed-to-boost-innovation-and-financial-re-
sults/?sh=2e02e09bc4a6 (retrieved in July 2021)

We also need to ensure the veracity of the data 
that is and will be used for sustainable develop-
ment scenarios. Today, we can algorithmically 
generate fake text, audio, photos and videos by 
means of deep neural networks (deep fakes) 
that are indistinguishable to humans from real 
content. If we are using data to inform decisions 
that impact the lives of millions of people, we 
need to ensure that such data is indeed truthful 
and a reflection of the underlying reality that the 
models are attempting to model. 

E also stands for equity. The development and 
wide adoption of the internet and the World Wide 
Web during the Third and Fourth Industrial Revolu-
tions has undoubtedly been key to democratising 
the access to information. However, the original 
principles of universal access to knowledge and 
the democratisation of technology are in danger 
today due to the extreme dominance of technol-
ogy giants in the USA (Apple, Amazon, Microsoft, 
Facebook and Alphabet/Google) and China (Ten-
cent, Alibaba, Baidu). Together, these non-Euro-
pean technology companies have a market value 
of more than USD 5 trillion and a US market 
share of more than 90 % in internet searches 
(Google), more than 70 % in social networking 
(Facebook) and 50 % in e-commerce (Amazon). 
This market dominance leads to data dominance. 
In fact, most of these technology companies are 
data companies that earn thousands of millions 
of dollars by analysing and monetising the data 
they collect about their users. Note that a signifi-
cant portion of the valuable human behavioural 
data that could be used in the context of the 17 
SDGs is generated and captured by the services 
that these technology companies offer to their 
customers – services that address many aspects 
of our lives, including our entertainment, work, 
health and wellbeing, sports, education, transpor-
tation, travel, social connections, communication, 
shopping, information and product needs.
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In addition, in the 21st century we are observ-
ing a polarisation in the distribution of wealth, as 
described in the context of SDG 10. According to 
the Global Wealth Report 2019 by Credit Suisse 
(Shorrocks and Hechler-Fayd’herbe, 2019), the 
100 richest people in the world are richer than 
the poorest 4 000 million. This accumulation of 
wealth in the hands of very few has been at least 
partially attributed to technology and the Fourth 
Industrial Revolution. With the agrarian revolution 
in the Neolithic and for thousands of years after-
wards, wealth was associated with ownership 
of land. Following the First Industrial Revolution, 
wealth was a result of owning capital assets, 
such as machines and factories. Today, one could 
argue that data – and more importantly, the abil-
ity to leverage it and make sense of it – is the 
asset that generates the most wealth, generating 
what is known as the data economy. Thus, if our 
goal is to maximise the positive impact of this 
abundance of data, we should develop and pro-
mote new models of data ownership, manage-
ment, exploitation and regulation. Data used for 
sustainable development could contribute to 
both better measuring and reducing inequality 
(see the SDG 10 section). 

N for non-maleficence. This means minimis-
ing the negative impact that might result from 
the use of data-driven AI methods. Within this 
principle, we include being prudent in the de-
velopment of AI-based systems and highlight 
the need to: 

 ȧ provide reliability and reproducibility 
guarantees

 ȧ maximise data security

 ȧ always preserve people’s privacy, as 
previously discussed.

Once agreed upon, the ethical principles will 
need to be published, implemented and com-

47 Verhulst, Steefaan G., The Three Goals and Five Functions of Data Stewards: Data Stewards: a new Role and Responsibility 
for an AI and Data Age, Medium and The Data Stewards Network, New York, NY, 2018.

plied with in practice through appropriate gov-
ernance. The roles and responsibilities of each 
of the three actors – namely, companies, public 
and non-profit institutions, and people – need 
to be clearly defined, understood and accepted. 

Given the multi-disciplinary nature of data-driven 
projects for public good, a combination of experts 
from different disciplines – ranging from AI to so-
cial sciences and humanities experts – is required 
for the projects to succeed. This multi-disciplinary 
nature adds complexity, but it is necessary and 
particularly beneficial when it comes to the def-
inition of, and compliance with, ethical principles 
since the teams would include ethicists. 

Moreover, external oversight bodies are also desir-
able to ensure that the ethical principles are com-
plied with. Data stewards47 have been proposed in 
recent years for this purpose. Data stewards are 
individuals or groups of individuals within an or-
ganisation who are responsible for the quality and 
governance of data in data-driven projects that 
take place in their organisations, including initia-
tives for social good. Alternative options include 
the creation of external oversight ethics boards 
and/or the appointment of a chief ethics officer 
with oversight and auditing responsibilities to en-
sure that projects with social impact are aligned 
with the pre-defined ethical principles and human 
values of the societies where they are developed.

Another approach to ensure compliance with 
the ethical principles agreed upon is by requiring 
the use of open processes, code and systems, 
by deploying regulation that requires the ethic-
al principles to be followed and/or by fostering 
knowledge sharing, including collaborations with 
academia and civil society organisations.

In addition, understanding the cultural and social 
characteristics of the societies where the pro-
jects are deployed is a must. Therefore, working 
with local institutions and the civil society of the 
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countries where the projects will take place is 
absolutely necessary, as previously highlighted.

In sum, any use of data-driven AI methods for 
sustainable development should be open, trans-
parent, accountable and always respectful of 
human values and rights. The results of the pro-
jects should be auditable regarding their purpose, 
accuracy, reproducibility, veracity and fairness, 
particularly given the fact that the use of AI in 
the context of the 17 SDGs is an overly broad, 
ambitious, long-term and multi-institutional en-
deavour. 

Even when the political, technological and eth-
ical challenges are addressed, projects that 
leverage data-driven AI for public good might 
fail if they lack a sustainable financial model. 
Hence, the fourth type of challenges is of an 
economic nature

Economic challenges

Many initiatives that have applied data-driven 
AI methods to support the achievement of the 
17 SDGs have been in the form of pilots. Ques-
tions inevitably arise about the generalisation 
capability and the financial sustainability of 
such projects. 

Several companies that have been at the fore-
front of the ‘data and AI for social good’ move-
ment over the past 10-15 years – particularly 
telecommunication operators such as Telefon-
ica and Orange – have also invested in devel-
oping their own related commercial offerings. 
Recently, technology companies have joined the 
movement of leveraging their data for purposes 
related to social good and sustainable develop-
ment, including Facebook48 and Google49. In de-
veloped countries, the granularity, volume and 
richness of human behavioural data collected 
by technology companies is undisputed. 

48 https://dataforgood.fb.com/
49 https://cloud.google.com/data-solutions-for-change/
50 https://digital-strategy.ec.europa.eu/en/library/meetings-expert-group-business-government-data-sharing

The commercial solutions developed by these 
companies provide user and client pre-comput-
ed indicators derived from aggregate customer 
data, such as population density and mobility 
estimations. These estimations are also valu-
able in the context of the 17 SDGs.

Given this overlap between commercial and 
public interest purposes, companies might re-
sist the development of solutions for sustain-
able development as they could cannibalise 
their existing data-driven services. However, 
there are important considerations to be made 
in the context of data-driven projects to sup-
port the 17 SDGs. As described in the previous 
section, many of the data-driven AI systems 
used in the context of the 17 SDGs would need 
to comply with strict regulations, scientific rig-
or, ethical frameworks and governance models 
appropriate to the fact that they will be used 
for public-good purposes. Such requirements 
might not apply to the same extent in the case 
of proprietary, commercial services.

Thus, the value proposition related to projects 
for sustainable development would need to be 
defined such that it would be complementary 
to, and not in competition with, the existing 
commercial products offered by these com-
panies. Moreover, a sustainable financial model 
is needed for the projects to succeed beyond 
their pilot phase. Even if they are for social 
good, they do not necessarily need to be for 
free, depending on the use case. This economic 
dimension is thoroughly discussed in the report 
by the European Commission’s High-level Ex-
pert Group on Business-to-Government Data 
Sharing50 and in Letouze et al. (2019).
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An additional question related to economic chal-
lenges is whether people should be able to sell 
their own data on a personal data market. The 
cases for and against such a model can be and 
have been argued convincingly (Speikermann et 
al., 2015).

Finally, as previously explained, data-driven AI 
methods require massive amounts of data and 
computation, with a potentially significant CO2 
footprint. Thus, the final set of challenges con-
cern the environmental and climate impact of 
the development and wide deployment of AI in 
our societies.

Environmental and climate challenges

AI has tremendous potential to help us ad-
dress the climate emergency (SDG 13), as 
previously described. However, AI is also a 
non-negligible contributor to GHG emissions 
(Garcia-Martin et al., 2019) given the high 
energy needs of today’s data-driven methods. 
This is for a variety of reasons.

First, a significant factor in the carbon emissions 
due to the development and deployment of AI 
systems stems from the energy consumption 
caused by data centres, given that data centres 
are a key element in the AI pipeline, hosting the 
vast amounts of data needed to train and use 
sophisticated machine learning models. On the 
positive side, while the demand and size of data 
centres has been growing steadily in the past 
years, their energy consumption has not grown 
proportionally, thanks to the development of 
energy-efficient infrastructure and hardware 
(Lei and Masanet, 2021), the use of renewable 
energy sources and even the application of AI 
methods to reduce their energy consumption51.

51 https://research.google/pubs/pub42542/ (retrieved in July 2021)
52 https://digital-strategy.ec.europa.eu/en/library/energy-efficient-cloud-computing-technologies-and-policies-eco-friend-

ly-cloud-market (retrieved in July 2021)
53 https://openai.com/blog/ai-and-compute/ (retrieved in July 2021)

Nonetheless, a report by the European Com-
mission52 estimates a 28 % growth in the 
energy consumption of data centres in Europe 
between 2018 and 2030. The report includes 
several recommendations to minimise the GHG 
emissions attributable to data centres, includ-
ing recommendations relative to information/
awareness raising measures, transparency 
initiatives, the development of standards and 
guidelines for energy-efficient cloud comput-
ing, soft-certification schemes, the inclusion of 
energy-consumption labels, the establishment 
of regulations for the non-material compon-
ent of data centres and cloud services and of 
minimum criteria for energy-efficiency in newly 
built data centres in the EU, policy-awareness 
raising and the definition of green public pro-
curement criteria and knowledge sharing.

Secondly, we need to consider the GHG emis-
sions due to training complex data-driven AI 
(deep learning-based) models. OpenAI research-
ers Dario Amodey and Danny Hernandez esti-
mate that since 2012 the amount of computing 
power used to train the largest data-driven AI 
models has been increasing exponentially, with 
a 3.4-month doubling time (faster than Moore’s 
Law 2-year doubling period)53. A recent study 
(Strubell et al., 2019) found that the carbon 
footprint of training just one state-of-the-art 
deep-learning model to perform natural lan-
guage processing tasks was equivalent to the 
amount of carbon dioxide that the average 
American produces in 2 years. In fact, the energy 
costs associated with training sophisticated ma-
chine learning algorithms has traditionally been 
the most expensive task when using AI to solve 
real-world problems. 
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Third, we have the GHG emissions caused by in-
ference processing, i.e. using a trained data-driv-
en AI model on new, unseen data, which has 
grown tremendously, representing 80-90 % of 
the cost of neural networks, according to Nvidia. 

While the growth in AI-related energy consump-
tion is partly mitigated by hardware-aware mod-
els (Marculescu et al., 2018) and energy-efficient 
hardware that has been specifically designed to 
train data-driven AI models (deep neural net-
works) – such as FPGAs and ASICs, there is an 
urgent need to implement systematic and ac-
curate measurements of the carbon footprint of 
AI systems to ensure that their positive impact 
is larger than their environmental cost, creating 
what some authors refer to as green AI (Schwartz 
et al., 2020). Note that understanding the car-
bon footprint of AI entails more than measuring 
the energy consumption of data centres, model 
training and inference activities. In fact, given the 
broad set of use cases where AI is having an im-
pact and the complex, multi-layered proprietary 
production process of AI systems, assessing the 
carbon footprint of AI is certainly challenging.

Thus, several authors have recently focused 
on assessing the carbon footprint related 
to AI research and have built tools to ease 
its measurement (see e.g. the experiment 
impact-tracker (Henderson et al., 2020) and 
the machine learning emissions calcula-
tor (Lacoste et al., 2019) projects), given that 
research methods and results are generally 
openly available via scientific publications. Even 
in this case, there is a lack of systematic carbon 
emission measurements of AI research (Cowls 
et al., 2021). 

While these recent works are promising and re-
flect an increased interest in ensuring that the 
GHG emissions due to AI are minimised, cur-
rent practices both in research and industry are 
far from what these research papers propose. 

From the areas of opportunity highlighted in 
Section 2 and the challenges just described, 
several recommendations emerge to acceler-
ate the positive impact of AI on the SDGs (and 
thus on our societies and the planet itself) 
while minimising its potential negative impact.

4. Recommendations

In this section, I formulate key recommenda-
tions related to each of the barriers described 
above to accelerate the achievement of the 
SDGs thanks to AI. 

Data. Data is a fundamental asset for the 
SDGs. First, as a digital representation of an 
underlying reality that we need to measure so 
that we can assess the level of achievement of 
each SDG. Second, as a key element to enable 
the development of data-driven AI methods to 
find patterns, make predictions, detect outliers, 
automate tasks, etc. Thus, first and foremost, 
we should develop ambitious programmes to 
enable access to high-quality, relevant data, 
and invest in secure frameworks that provide 
access to data and/or actionable insights de-
rived from the data, even when the data is 
privately held. Support for more effective and 
accessible use of existing datasets is also 
important, as many existing datasets are not 
properly leveraged due to difficulty of access. 
Finally, data gaps would need to be identified 
and actions to fill them would need to be taken.

R&D. The opportunities in the intersection of 
AI and the SDGs are immense. However, most 
of these opportunities still entail significant 
investment in research. Hence, ambitious and 
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sustained investment in research and innov-
ation on the topic of AI for sustainable de-
velopment would be of paramount importance 
if we want to leverage the potential of AI to 
help us to achieve the SDGs. Moreover, many 
of the promising results have been achieved 
in small-scale studies with offline data. There 
is a lack of large-scale, real-world evidence 
of the systematic and sustained use of AI to 
support the achievement of the SDGs. There-
fore investments to leverage research and pilot 
results and deploy them in the wild over long 
time periods are necessary.

Vulnerability analysis. As societies increas-
ingly rely on AI systems, it becomes import-
ant to carry out vulnerability analyses of such 
dependencies and to deploy redundancy and 
backup systems to be able to gracefully re-
cover in case of failures, malfunctioning or 
hacking of the AI systems. 

Governance. Promote corporate governance 
and engagement models – including the ap-
pointment of data stewards, chief ethics offi-
cers and oversight boards – in public adminis-
trations, NGOs and private companies working 
on AI for SDG projects. Adopt and evaluate 
compliance with ethical frameworks to ensure 
that the use of the AI systems deployed to 
support the SDGs are aligned with the FATEN 
framework previously described. 

Openness and transparency. Develop open, 
participatory systems and standards to enable 
data- and knowledge sharing across compan-
ies, sectors and countries with inputs and over-
sights from relevant stakeholders. 

Education. Invest ambitiously in education, cap-
acity building and outreach to obtain the sup-
port and contributions from all private and public 
actors (including citizens) in Europe and beyond. 
The development of local capacities would be of 
paramount importance to ensure the sustaina-
bility and actual impact of the projects. 

Multi-disciplinary projects and diverse 
teams. Foster multi-disciplinary projects 
where AI experts collaborate closely with do-
main experts and policy makers to maximise 
the opportunities to have impact. 

Best practices and centres of excellence. 
The recently created NAIXUS (https://ircai.org/
global-network-of-ai-excellence-centers/) global 
network of AI excellence centers is a promising 
example of a multi-institutional, international 
effort to bring Sustainable Development to the 
AI research agenda. Support local and regional 
centres of excellence that leverage data and AI 
for the SDGs in key cities in Europe. Identify and 
share best practices. 

Incentives and regulation. Implement incen-
tives, remove regulatory barriers and define en-
abling regulations with the aim of accelerating 
the use of AI for sustainable development fol-
lowing ethical principles that are complied with 
and accounted for. Invest in the necessary infra-
structure and capacities to audit the compliance 
of AI systems with such ethical principles. 

Sustainable AI. Invest in and incentivise sustain-
able AI systems. Develop regulations that require 
the systematic measurement and publishing of 
their carbon footprint. 

Funding. Provide necessary funding to enable a 
financial model for AI for sustainable develop-
ment projects. Foster public-private long-term 
collaborations to accelerate the achievement of 
the SDGs by leveraging AI methods.
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5. Conclusion
We live in a time of prosperity, but we also 
face tremendous global challenges that 
threaten our own existence as a species – 
from poverty and hunger to climate change 
and the destruction of entire ecosystems. Ef-
fectively tackling these challenges requires an 
ambitious and coordinated commitment from 
most nations in the world, as reflected by the 
17 SDGs. AI – and specifically data-driven AI 
methods – has the potential to significant-
ly accelerate the achievement of the SDGs. 
However, to realise such a potential, we need 
to address five types of barriers related to the 
use of AI in this context: institutional, technic-
al, ethical, financial and environmental. It is 
therefore of paramount importance to invest 
ambitiously in tackling such barriers so we can 
effectively leverage the power of AI to help us 
improve living conditions in our planet. An oppor-
tunity that we must not miss, as it might be our 
best (and last) chance to ensure not just the 
sustainability of our societies and our planet but 
our own survival. As Theodore Roosevelt said: ‘A 
revolution is sometimes necessary’. As there is no 
planet B, I invite you to join the ‘AI for sustainable 
development’ revolution.
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