SC2 Dissemination Event

Environment-smart and climate-smart primary production Brussels, 27 June 2016

ICT-AGRI-2 ERA-NET Project
Information and Communication Technology
and Robotics for Sustainable Agriculture

Niels Gøtke
Coordinator
ICT-AGRI-2 ERA-NET

ICT-AGRI-2 ERA-NET Project

- Project Outline
- Consortium Overview
- Project Results
- Impact
- Lessons Learnt

Challenge addressed by ICT-AGRI

Modern agricultural engineering tools are necessary to enable agriculture to meet great challenges:

- Global demand for food, feed & bio-based products
- Reduce environmental footprint of agriculture
- Respond to customer demands for healthy food
- Combine precision livestock farming with high animal welfare standards

Why does it matter?

There are many areas where innovative ICT and robotic applications can help pave the way towards agricultural production systems that are more sustainable and efficient:

- Farm Management Information Systems (FMIS)
- Variable rate application (VRA)
- Controlled traffic farming (CTF)

Approach used by ICT-AGRI-2

Mutual Learning

Agreed
Strategic
Research
Agenda

Joint
Transnational
Funding Call(s)

Communication & Dissemination

Approach used by ICT-AGRI-2

- Mapping and analysis of research and innovation in the area of precision farming
- Update of the Strategic Research Agenda
- Development of transnational joint calls for coordinated research and innovation
- Coordination within the European Research
 Area
- Dissemination, online tools, sharing of best practice

Impact assessment and evaluation of ERA-NET effectiveness

Main objectives of ICT-AGRI

- To contribute to the development of an ecoefficient, resource-efficient and competitive agriculture through an enhanced and improved use of ICT and robotics
- Contribute to European collaboration within ICT and robotics for a sustainable agriculture

Consortium overview

ICT-AGRI
18 Partners
15 Countries

ICT-AGRI 2

23 Partners16 Countries

2009 2014 2017

List of Partners

No	Partner	Country
1	Innovation Fund Denmark	Denmark
2	Ministry of Food, Agriculture and Fisheries, Danish AgriFish Agency	Denmark
3	Institute for Agricultural and Fisheries Research	Belgium
4	Flanders Innovation & Entrepreneurship	Belgium
5	Ministry of Agriculture and Forestry	Finland
6	National Research Institute of Science and Technology for Environment and Agriculture	France
7	Federal Office for Agriculture and Food	Germany
8	Federal Ministry of Food and Agriculture	Germany
9	Greek Research & Technology Network	Greece
10	Teagasc – Agriculture and Food Development Authority	Ireland
11	Ministry of Agriculture and Rural Development	Israel

List of Partners

No	Partner	Country
12	Ministry of Agriculture, Food and Forestry Policies	Italy
13	Latvian Academy of Science	Latvia
14	Aleksandras Stulginskis University	Lithuania
15	Ministry of Economic Affairs, Agriculture and Innovation	Netherlands
16	Netherlands Organisation for Applied Scientific Research	Netherlands
17	Stichting Dienst Landbouwkundig Onderzoek	Netherlands
18	Federal Office for Agriculture – Bundesamp für Landwirtschaft	Switzerland
19	Instituto de Formento de la Region de Murcia	Spain
20	Corporatión Tecnológica de Andalucía	Spain
21	General Directorate of Agricultural Research and Policies	Turkey
22	Scientific and Technological Research Council of Turkey	Turkey
23	Department for Environment, Food and Rural Affairs	UK

Number of partners per type of organisation

Type of organisation	No. of partners
Public Body	13
Research Organisation and Public Body	6
Research Organisation	2
University	1
Enterprise	1
Total	23

Type of organisation	No. of partners
National Ministries	9
Funding Agencies	8
Universities/Research Institutes	6
Total	23

Project Results

Mapping

- Online data management tool for mapping
- Published information about funded projects
- Manual import of data from funder websites
- Preparing for automatic import by Open Access technology
- Advanced full text search for identifying similar projects

Strategic Research Agenda

CHALLENGES

GOALS

SOLUTION DOMAINS

Global food security

Sustainable resource management

Energy consumption

Food quality and safety

Climate change

Social aspects and demands

Increase productivity

Reduce waste in the food chain

Optimize fertilizer and pesticide use

Optimize water management

Maintain soil quality

Protect and promote biodiversity

Minimize air pollution

Increase energy efficiency

Ensure food quality and safety

Food traceability and information

Reduce greenhouse gas emissions

Increase animal welfare and health

Less tedious and hazardous work

Plant Production

Precision Crop Farming

- Variable Rate Application (VRA) - Controlled Traffic Farming (CTF) **Animal Production**

Precision Livestock Farming

Automated Indoor Climate Control

Automated Quality Control

Agricultural Robots

Farm Management and Information System (FMIS)

Farm Management

Joint Transnational Funding Calls

Joint transnational funding calls

- 2010 Integrated ICT and automation for sustainable agriculture (7 projects)
- 2012 ICT and automation for a greener agriculture (8 projects)
- 2014 Applications for smart agriculture (with SmartAgriFood) (9 projects)
- 2015 Enabling Precision Farming (8 projects)
- 2016 Farm Management Systems (Partnerships)
 - 2017 Farm Management Systems

Impact of ICT-AGRI-2

- A broad acceptance and use of standards leading to (a) reduced costs and improved quality of robotic machines and associated software and (b) enhanced uptake and use of ICT and robotics by farmers
- A faster and safer implementation in practice of new knowledge produced by interdisciplinary agricultural research and development

Impact of ICT-AGRI-2

- Improved knowledge at national and EU funding bodies on the state of the art, current RTD projects and future needs of ICT and robotics in agriculture, providing improved possibilities for coordinated funding
- Critical mass, better use of limited resources and reduced overlaps in activities to produce solutions to strategic topics of mutual interest
 - with regard to ICT and robotics in agriculture

Impact of ICT-AGRI-2

- Effective networking amongst all relevant players and improved access to scientific and technical information
- A significant contribution to effective management and operation of ERA-NETs

Impact assessment

- Definition of objectives and indicators
- Data collection
 - Targeted questionnaires and monitoring tools
 - Monitoring online activity of Meta Knowledge Base
 - Reporting from funding projects
 - Questionnaires aimed at stakeholders (applicants, platform users, partners, etc)
- Impact evaluation and recommendations
 - Quantitative and qualitative analysis
 - Report with results and recommendations

Dissemination of results

- Scientific channels
- Open Access encouraged for all results
- Interactive website and Meta Knowledge Base +2000 users www.ict-agri.eu
- Newsletters, public deliverables
- Networking between ICT-AGRI partners
- Networking between ICT-AGRI and other transnational research coordination initiatives
- Structure Hamas works

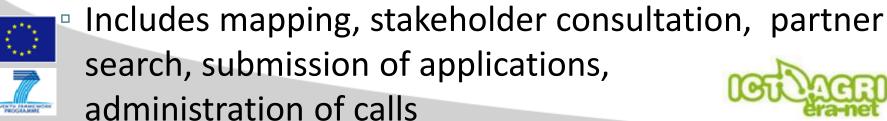
Networking amongst ICT-AGRI funded researchers

Measures taken to ensure uptake of results beyond consortium

- Networking with transnational research coordination initiatives
 - Other ERA-NETs (ERA-NET SusAn, ERA-GAS)
 - JPI FACCE
 - EIP AGRI Operational Groups
 - Relevant EIT KICs
- Collaboration with European and national PPPs
- Interactive platform and Meta Knowledge Base

http://ict-agri.eu

Measures taken to ensure uptake of results beyond consortium


- Supported interaction with stakeholders: ICT suppliers, food chains, public services, advisory services, software houses, machine manufacturers
- Support of Open Access for mapping and exchange of scientific and technical information
- Results of impact assessment integrated into ERA-NET funding activities and networking activities

Success Factors: Lessons Learnt

- Heritage from ICT-AGRI ERA-NET 2009-2014
- Experience in launching and administering transnational joint calls
- Recognition and goodwill among stakeholders
- Support of funding agencies
- ICT-AGRI Strategic Research Agenda
 - Research and innovation requirements, recommendations for implementation
- ICT-AGRI Meta Knowledge Base

- Cross-thematic ERA-NET spanning 3 FP7 themes
- Ministries and funding agencies bring political support, experience in policy development, operation of funding programmes, stakeholder engagement, topic expertise
- Universities and research institutes have in-depth expertise in topic area, strong record of industry collaboration

Knowledge gaps and further research needs

- Research and innovation involving more SMEs and private companies
- Update to Strategic Research Agenda (2017) will identify knowledge gaps or further research needs in the area of precision farming

Thank You

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 618123

