

« Workshop on Aquatic food products and new marine value chains »

FOOD 2030 CONFERENCE

Potential of New Algae Value Chains for Food

Patricia J Harvey

12 October 2016

Facts and Figures

80,000 – 100,000 different algal species (~25,000 macroalgae)

But only ~200 used world-wide

Uses

Chlorella in bread

Spirulina drinks

Dunaliella capsules

Spirulina powders, capsules

cooking oils

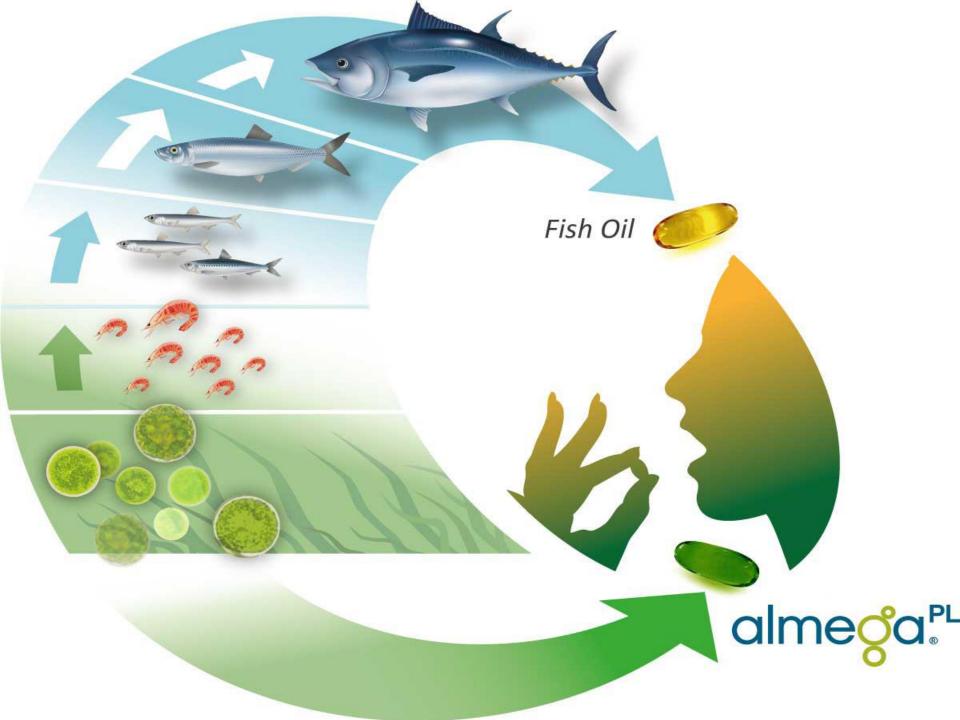
Seaweed foods a long history

Alga	High value molecule	Whole alga
Dunaliella	β-carotene	Food supplement
Haematococcus	Astaxanthin	Food supplement/ingredient
*Arthrospira platensis	Phycocyanin	Dried alga food supplement
Nannochloropsis	EPA	
Schizochytrium	DHA	
Chlorella		Dried alga food; ingredient/supplement
<i>Pavlova, Phaeodactylum, Chaetoceros, Skeletonema</i> etc		Living feed for aquaculture

*Arthrospira, known as Spirulina, has been described by the World Health Organization as one of the greatest superfoods on earth

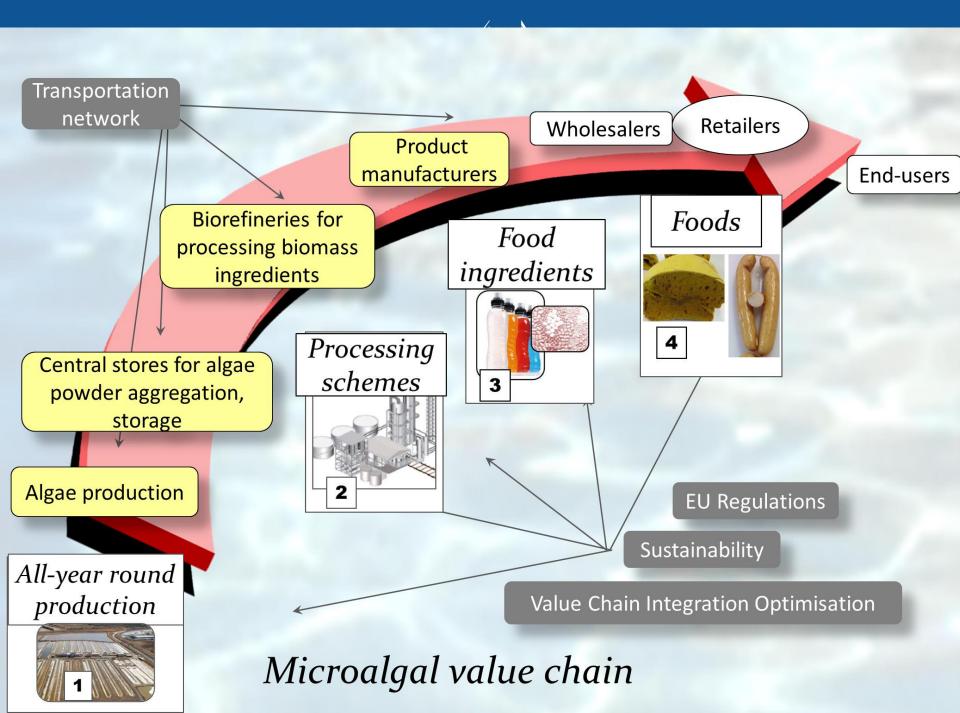
	Chlorella	Spirulina	Dunaliella
Alga		5	
Into large-scale commercial	1960s	1970's	1980's
Tonnes (dw) p.a.	2,000	5,000	3,000
		Dlus	a handful of

Plus a handful of others

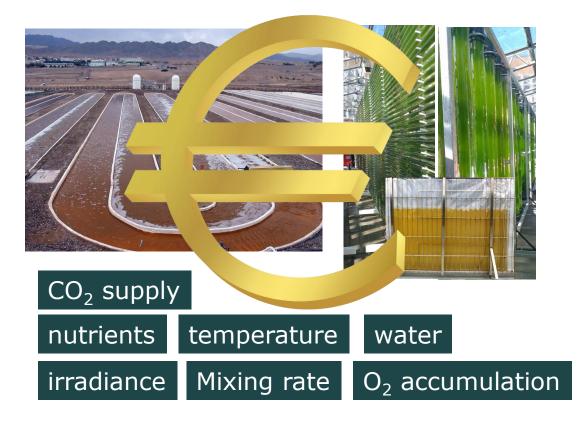

Microalgae: <20,000 Total tonnes (dw) p.a Macroalgae: ~100 x more Wheat: ~70,000 x more

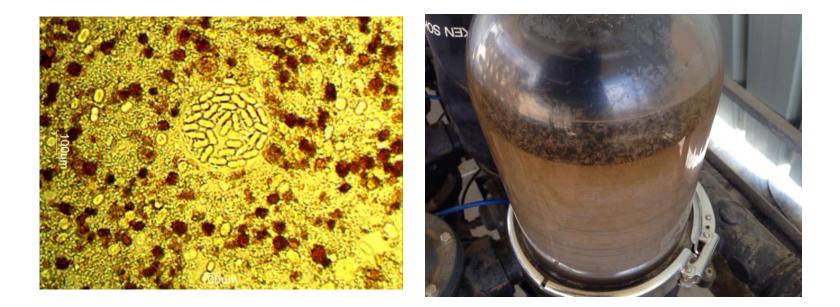
Value as Food

Species	Protein	Carbohydrates	Lipids
A. platensis	63	15	11
D. salina	57	32	20
C. vulgaris	51-58	12-17	14-22
Nannochloropsis	28	36 (β-glucan)	18
H. pluvialis	48	27	15
Soya	37	30	20

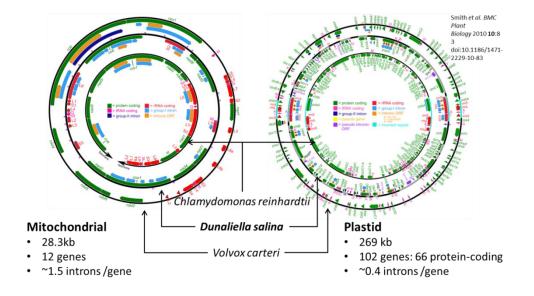

- Amino acid profile acceptable
- Carbohydrates starch available
- Fatty acids (C12-C22) include DHA and EPA PUFAs

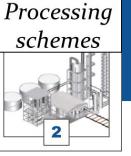
STATE OF KNOWLEDGE: MAIN CHALLENGES REGARDING THE TOPIC? MAIN GAPS IN RESEARCH?

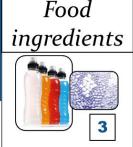

Looking at the whole value chain


Upstream cultivation – at scale

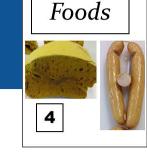
- Microalgal biomass productivity should be ~25 g m⁻²d⁻¹.
- <10 g m⁻²d⁻¹ is normally achieved


Site-specific biological surprises, which need to be controlled Fragility of algae, which needs to be respected




What to grow? Strains

- Complex genomes & confused taxonomy
 - Genome sequence information lacking
 - Possible horizontal gene transfer as well

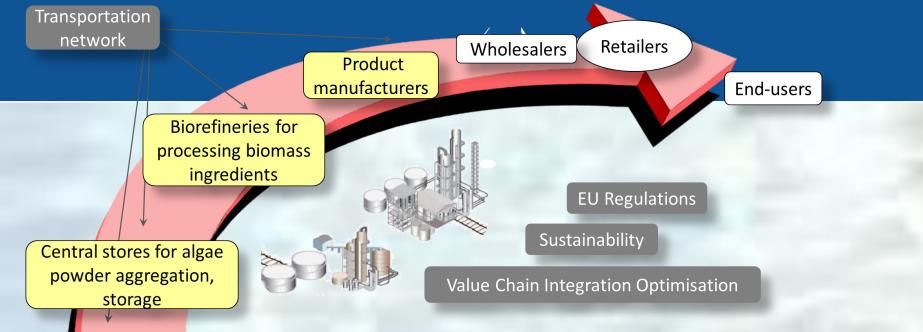


Processing "know-how" is new

- Harvest large volumes
- Feedstock variability
- Experience in handling algal powders, pastes at scale
- New technologies –no organic solvents
- Shelf-life
- Analysis

New food applications needed

Increasing amounts of algal process residue


- Performance in blends
- Texture
- Taste
- Smell
- Shelf-life

Fish sausage data courtesy H. Hondo, M. Ehmell, SP

Milledge JJ, Harvey PJ (2016) Potential process 'hurdles' in the use of macroalgae as feedstock for biofuel production in the British Isles. J Chem Technol Biotechnol 91:2221-

Macroalgal value chain: similar challenges

- Which varieties to breed?
- Alien species, diseases?
- Complex coastal management?
- Biomass seasonality storage?
- Processing methods?
- Regulations, sustainability, optimisation

Highlights from workshop discussion

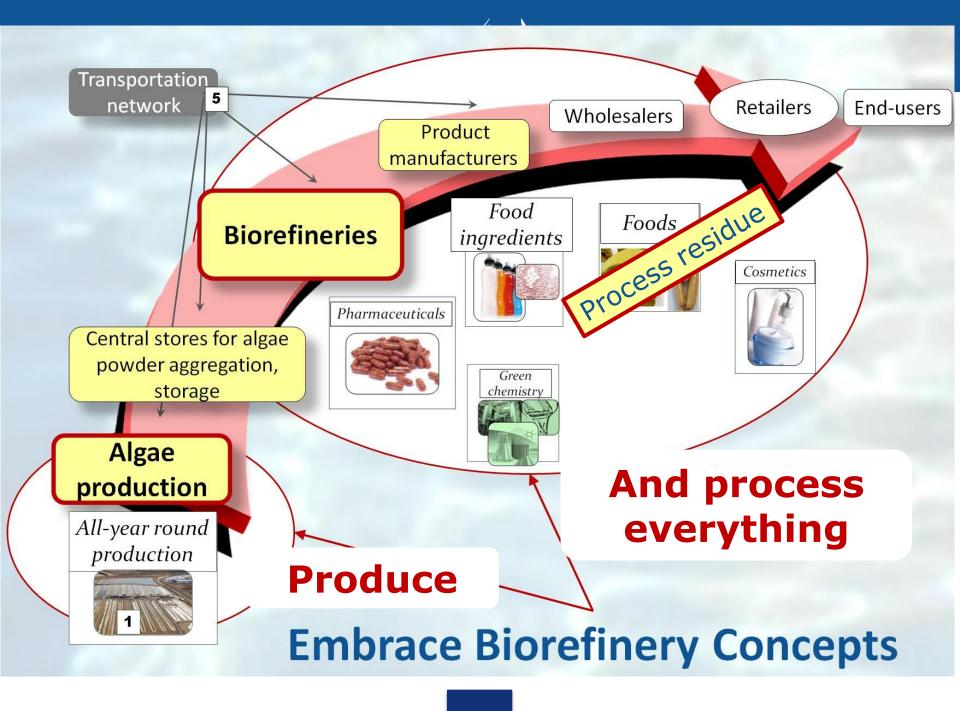
- Production what types and where? Climate change may bring increased saline water areas on land
- Processing know-how is still underdeveloped
- Farming know-how needs to be conducted in a cost-effective manner
- Contamination needs to be managed
- Genomics opportunities exist for developing non-GMO strains

WHAT ARE THE MAIN NON-TECHNICAL BARRIERS (E.G. REGULATORY, MARKET COSTS, SOCIAL)?

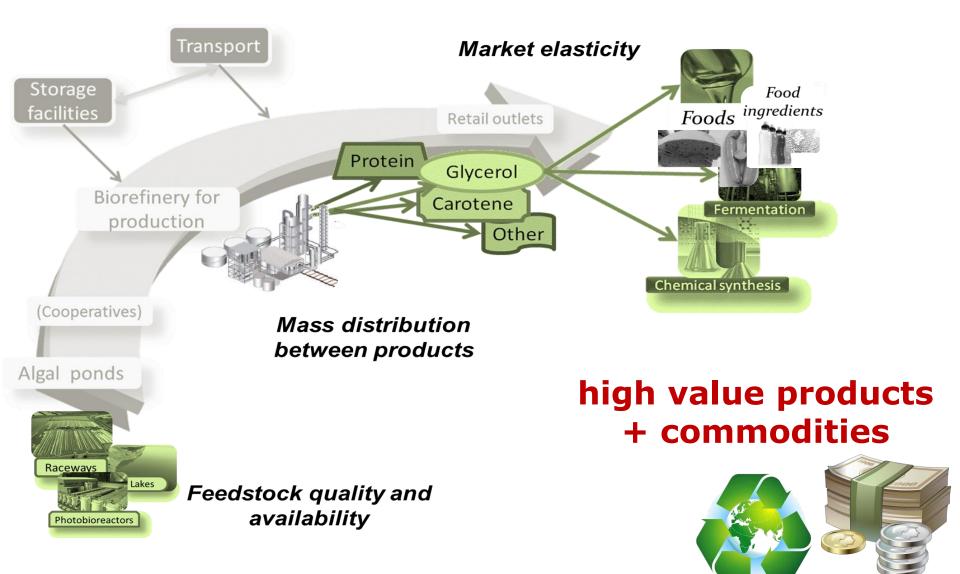
- Novel Foods Regulation (EU) 2015/2283, 25 Nov 2015
- **Consumer acceptance** China has a long history of acceptance; Europe, novel
- **Skills** –to increase investment confidence in algae production for food
- **Spatial planning** where can we cultivate what/at what scale?
- Value chain integration optimisation – across all parts of the chain
- **Proof of sustainability:** (C footprint, water footprint, nature conservation, social implications).
- Knowledge awareness raising that aquaculture could benefit if the commodity price / sustainability can be met
- Business Models can we learn from Asia?
- Investor confidence –especially in farming
- Costs of producing food as commodity

SCIENTIFIC PRIORITIES FOR DEVELOPING FURTHER THE SECTOR?

Area	Scientific Priority
Upstream	Develop large-scale systems
	 Increase photoautotrophic growth rate
	 Sustainable all-year-round production
	 Develop low-cost, continuous harvesting
	Manage process water
	Co-operate: North-South
Strains	 Increase knowledge of algal metabolism and regulation to design
	 Embrace CRISPR/Cas9 technology for genome editing
Downstream	 Develop large-scale high volume processing Use non-fossil safe processing solvents
Products	 Capitalise on trend for natural products, healthy sustainable eating, meeting EU regulations
	 Develop a Biorefinery approach with a Product Platform of high- value products as well as commodities
Value chain	 Replace fish feed soya with algae biorefinery residues
	 Increase value of outputs, decrease costs of inputs, sustainably



POSSIBLE ACTIONS AT SHORT AND MEDIUM TERM TO HELP AND/OR EXPAND THE SECTOR



Possible actions at short and medium term to help and/or expand the sector

- 1. Consumer campaign:
 - Chefs,
 - "VIPs"
 - Policy Makers,
 - Investors
- 2. Education
- 3. Biorefineries approaches
- 4. Demonstrator projects

Understand, develop Product platform and Markets

And apply sustainability assessments to improve algae pathways including LCA, carbon and water footprints

D-Factory Consortium

www.d-factoryalgae.eu/

D-Factory: Funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 613870 MacroBioCrude: Funding from EPSRC <u>http://gtr.rcuk.ac.uk/projects?ref=EP%2FK014838%2F1</u>

Thank You

FOOD 2030 CONFERENCE

) #FOOD2030EU