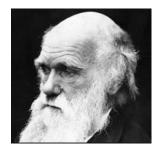

The exposome: 21st century challenges

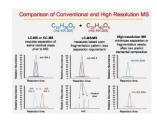

Gary W. Miller, Ph.D.
Vice Dean for Research Strategy and Innovation
Professor of Environmental Health Sciences
Mailman School of Public Health
Columbia University, New York, NY
gary.miller@columbia.edu

@exposome
@garywmiller3

Disease causation/ exacerbation =
$$\sum$$
 Genetic factors + \sum External factors + \sum Health/disease = Genome + Exposome phenotype

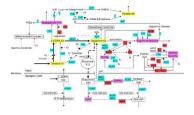
Exposome – a systematic, unbiased, and omic-scale examination of external factors contributing to disease or health status

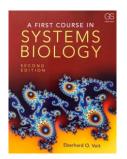
An imbalanced equation


 $G \times E = P$

If our phenotype is a result of our genetics and environment, why then do we spend a disproportionate amount of time, money, and energy on genetics? Exposome: the cumulative measure of the environmental influences and corresponding biological responses throughout the lifespan.

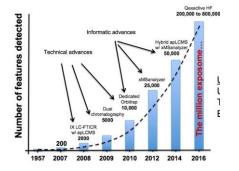
Miller GW, Jones DP. The Nature of Nurture: Refining the Definition of the Exposome. Toxicological Sciences, 137:1-2, January, 2014.

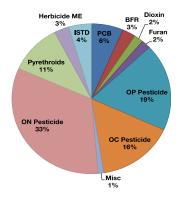

"Derived from the term exposure, the exposome is an omicscale characterization of the nongenetic drivers of health and disease."

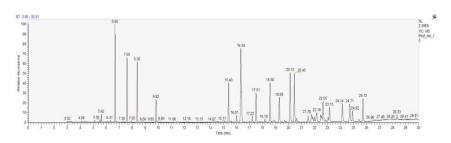

MM Niedzwiecki, DI Walker, R Vermeulen, M Chadeau-Hyam, DP Jones, and GW Miller. The Exposome: Molecules to Populations. Annual Reviews of Pharmacology and Toxicology. 59:107-127, 2019

Awarded in 2013 (NIH P30-ES019776), Funded through 2022

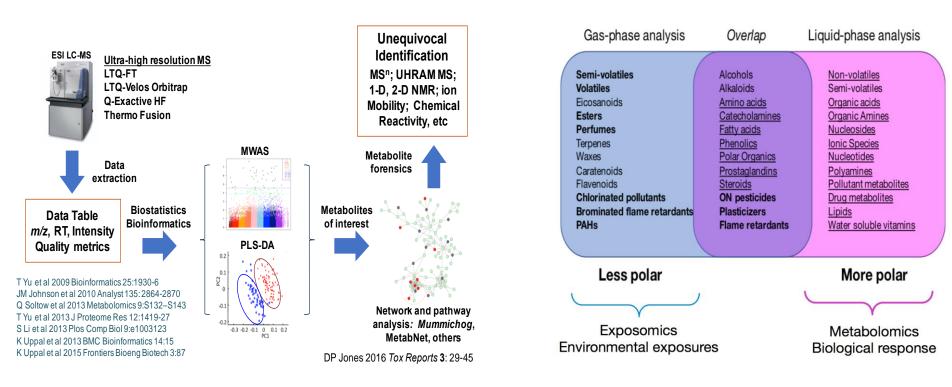
administration (Miller 2013-2018; now Marsit)
analytical chemistry-targeted (Barr, Ryan)
metabolomics/exposomics-untargeted (Jones, Li)
pilot awards (Morgan) and patient studies (Ziegler, Marsit)
community engagement (Kegler/Pearson)
data science/systems biology (Waller, Voit, Clifford, Li, Qiang, Kemp)




The Exposome: A Primer
the ex-POZE-ohm: a pr i m'-er
the environmental equivalent of the genor

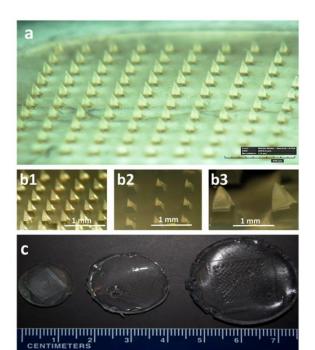


Sary W. Miller, Ph.D. Igastment of Environmental Health Wiles School of Public Health

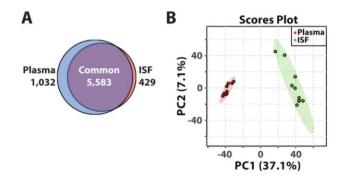


Replicating the high-resolution metabolomics LC or GC HRMS at Columbia as part of the Irving Institute CTSA

Capturing <u>exogenous</u> chemicals and <u>endogenous</u> metabolites

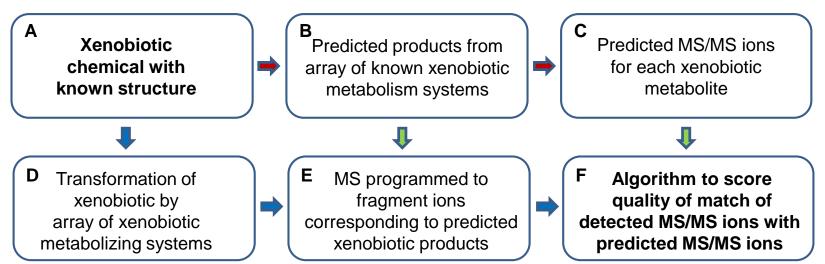


Cite This: Anal. Chem. 2018, 90, 3786-379

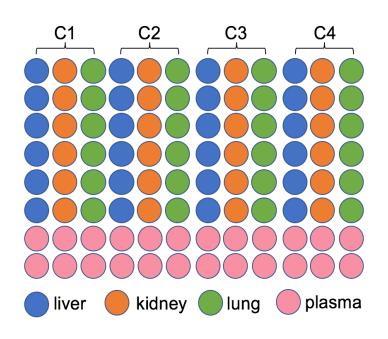

Collection of Analytes from Microneedle Patches

Andrey V. Romanyuk, [†] Vasiliy N. Zvezdin, [‡] Pradnya Samant, [†] Mark I. Grenader, [†] Marina Zemlyanova, [§] and Mark R. Prausnitz*, [†]

Human Suction Blister Fluid Composition Determined Using High-Resolution Metabolomics


Figure 1. High-resolution untargeted metabolomic profiles of ISF and plasma.

Samant, Niedzwiecki, Raviele, Tran, Mena-Lapaix, Walker, Felner, Jones, Miller, Prausnitz, Science Translational Medicine-Under revision



Mega-scale identification of xenobiotic metabolites. Compound ID Core. Jones, Morgan, Li, Miller (MPI)

First generation 96-well plate assay, 4 tissues:

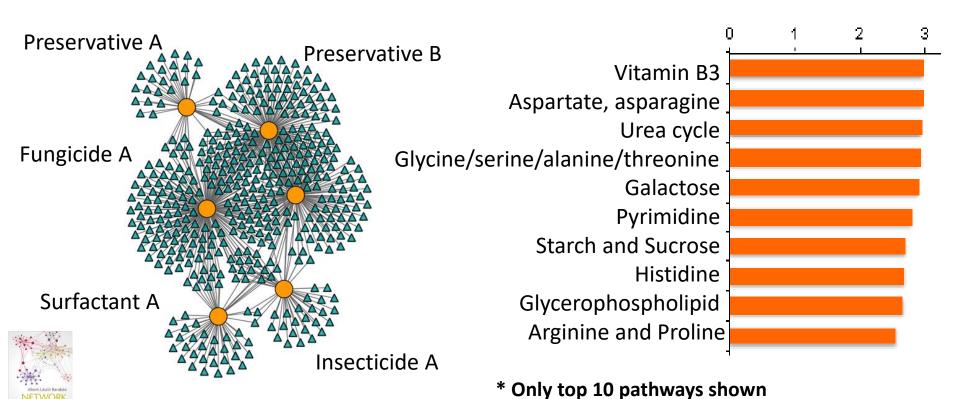
4 chemicals, 6 concentrations or 8 chemicals, 3 concentrations

96-well plate with human plasma, liver, kidney and lung S9 fractions to study metabolites of four chemicals, C1-C4.

Commercial S9 fractions (microsomes + cytosol) pooled from 50 human liver, kidney, and lung, are supplemented with necessary cofactors for oxidation, reduction, glucuronidation, sulfation, methylation and acetylation

A recent example from a collaboration with the Mayo Clinic

- Primary sclerosing cholangitis (PSC)
- US prevalence: 13.6/100,000 (0.014%)
- Average age of diagnosis: 41 years
- Transplant free survival: 12 years
- Only treatment: Liver transplant
- Outcomes: malignancy, liver failure
- Mayo sees 5% of all U.S. patients with disease
- ~70% of cases have inflammatory bowel disease

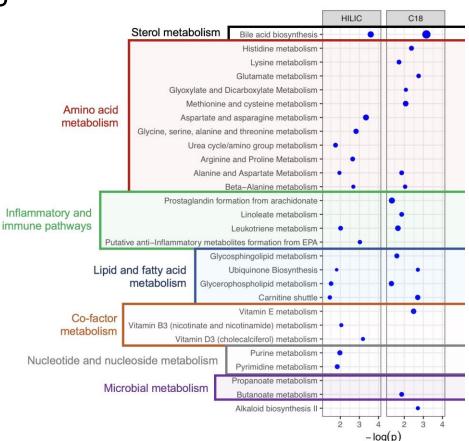

EWAS reveals altered levels of environmental pollutants MWAS identified bile acid alterations

Chemical	p-value	Regression Coefficient	Odds ratio , IQR (95% Confidence interval
Fenpropimorph	0.012	2.05	7.78 (2.47, 82.22)
Nonylphenol	0.002	1.04	2.84 (1.55, 5.89)
Protocatechuic acid	0.003	1.01	2.75 (1.53, 5.75)
Aldicarb sulfone/Acetamiprid	0.012	0.75	2.13 (1.28, 4.19)
Ethyl paraben	0.014	0.63	1.87 (1.22, 3.33)
Chlorthiophos	0.078	0.49	1.63 (0.97, 2.89)
Terbutylazine	0.056	0.48	1.62 (1.01, 2.75)
Fenvalerate	0.063	0.44	1.56 (1.00, 2.58)
Triclocarban	0.076	-0.24	0.79 (0.59, 1.02)
Anthraquinone	0.093	-0.37	0.69 (0.44, 1.05)
Perfluorooctanoic acid	0.084	-0.38	0.68 (0.44, 1.05)
Diphenamid	0.012	-0.40	0.67 (0.47, 0.9)
Diphenamid	0.052	-0.41	0.66 (0.43, 0.99)
Dimethachlor	0.049	-0.45	0.64 (0.40, 0.98)
Monocrotophos	0.030	-0.46	0.63 (0.41, 0.94)
Thiabendazole	0.062	-0.59	0.55 (0.29, 1.02)
Perfluorooctanesulfonic acid	0.007	-0.65	0.52 (0.31, 0.79)
Fenobucarb/Promecarb	0.019	-0.76	0.47 (0.24, 0.87)
Carbaryl	2.6E-05	-0.97	0.38 (0.23, 0.57)

>205 environmental chemical biomarkers identified in PSC, PBC and control population. Each was tested for association with disease status using logistic regression.

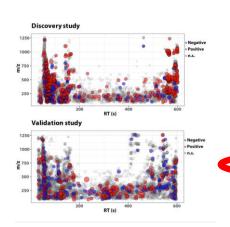
	Metabolite	OR
PSC	Glycochenodeoxycholic acid	>10
	Taurochenodeoxycholic acid	>10
	Taurine	2.8
PBC	Glycocholic acid	6
	Cholic acid	3
	Taurine	3.7

Exposomics-Metabolomics Networks Reveal Top Pathways Associated with PSC



Primary sclerosing cholangitis

<u>PSC</u>


Dissecting the pathogenesis an outcomes of PSC using multi-omics by studying the exposome and genome. NIDDK RC2 \$8M

>800 patients per group

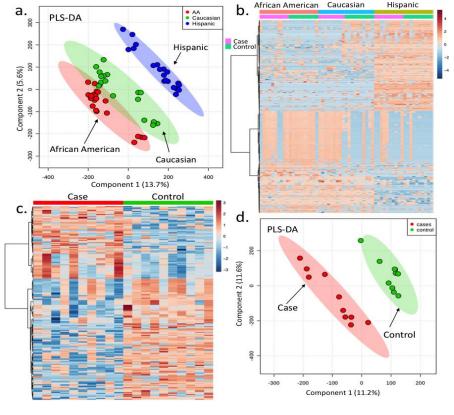
Alzheimer's disease (93), Mild cognitive impairment (50), controls (59) APOEgentoype, CSF (AB42, pTau)

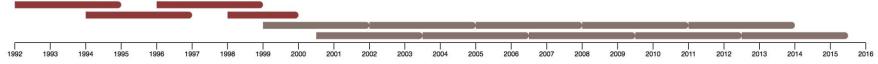
Table 4. Putative compound identification of plasma features from MWAS.

m/z	RT	Change in AD	Putative compound(s)	Predicted adduct	ID level ^a	Notes
129.0661	89	Higher	Glutamine (2 ppm)	-H ₂ O+H	1	
231.1205	211	Higher	5S,6S-epoxy-15R-hydroxy-ETE (+Na, 0 ppm)		3	
246.9550	127	Higher	Numerous database matches	-H ₂ O+H	-	Contains halogen (Cl and/or Br)
334.1410	86	Lower	Piperettine (1 Hydroxyated metabolite	of DDE		
349.1515	80	Lower	Piperine (1 ppm)	+ACN+Na	4	
386.8946	61	Higher	1,1-Dichloro-2-(dihydroxy-4'-chlorophenyl)-2-(4'- chlorophenyl)ethylene (9 ppm)	+ K	2	Contains halogen (Cl and/or Br)
662.0933	158	Higher	GDP-D-mannuronate (+ACN+H [M+1], 0 ppm); Chaetocin (-2H ₂ O+H [M+1], 8 ppm); Blighinone (+H [M+1], 9 ppm)	[M+1] isotope	4	
663.4524	36	Higher	Lipid A-disaccharide-1-P (+2H, 2 ppm); Aluminium dodecanoate (+K, 2 ppm)		4	5

^aID level indicates annotation confidence: 1, *m/z* and retention time confirmed with MS², 2: Multiple/isotopes present; 3: *m/z* matched single adduct mass within 10 ppm mass error, 4: *m/z* matched adduct mass of multiple isobaric species, probable identifications listed.

Metabolic, halogenated environmental chemical, dietary constituent, Alzheimer's medication

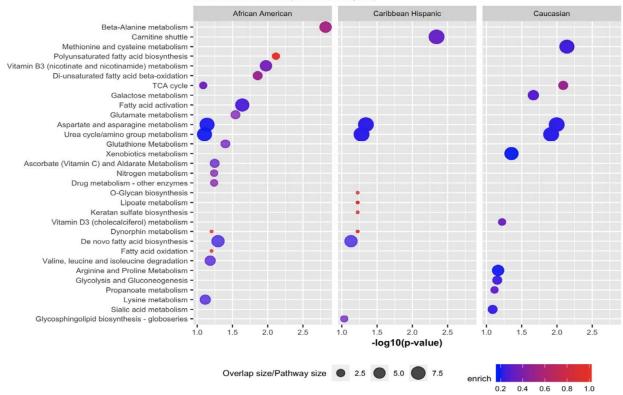

Table 2. Non-medication plasma metabolite features reproducibly associated with AD from MWAS


Feature		Study 1	Study 1		Study 2		Meta-analysis		
m/z ^a	RTa	Metabolite	Est (SE)	p	Est (SE)	p	Est (SE)	p	FDR
129.0661	89	Glutamine	0.22 (0.11)	0.04	0.31 (0.13)	0.02	0.25 (0.08)	0.002	0.07
246.9550	127	Unknown	0.41 (0.17)	0.02	0.38 (0.21)	0.07	0.40 (0.14)	0.003	0.08
349.1515	80	Piperine	-0.59 (0.31)	0.06	-0.89 (0.49)	0.07	-0.68 (0.27)	0.01	0.18

*Adduct of rivastigmine strongest feature associated with AD

Niedzwiecki et al., 2019 Annals of Clinical and Translational Neurology

WHICAP study of Alzheimer's disease, Richard Mayeux, PI Columbia University



Pathways altered in cases across different ethnicities

Size of bubble represents number of significant hits Enrichment is calculated as (Total Hits/Pathway size)

Vardarajan et al. Differences in plasma metabolites related to Alzheimer's disease, APOE-ε4 status and ethnicity. medRxiv (PrePrint) posted January 20, 2020

Study	Diagnostic groups	Replication cohort
Orešič et al. 2011 ⁴⁸	MCI (n=143), AD (n=47), Control (n=46)	None
Ibáñez et al. 2012 ¹⁰	AD (n=25), MCI- AD (n=13), MCI- SNAP (n=24), Control (n=23)	None
Trushina et al. 2013 ⁷³	MCI (n=15), AD (n=15), Control (n=15)	None
Motsinger-Reif et al. 2013 ⁵⁵	AD (n=40), Control (n=38)	None
Cui et al. 2014 ⁴⁹	AD (n=46), Control (n=37)	AD (n=63), Control (n=67)
Graham et al. 2015 ⁷⁴	MCI (n=16), MCI-AD (n=19), Control (n=37)	None
Morris et al. 2018 ⁷⁵	AD (n=64), Control (n=62)	None
Pena-Bautista et al. 2019 ⁷⁶	MCI-AD (n=29), Control (n=29)	None
Habartová et al. 2019 ⁷⁷	AD (n=20), Control (n=13)	None

	Diagnostic groups	Replication cohort					
ič et al.	MCI (n=143), AD (n=47), Control (n=46)	None					
ñez et al. 12 ¹⁰	AD (n=25), MCI- AD (n=13), MCI- SNAP (n=24), Control (n=23)	None					
ushina et al.	MCI (n=15), AD		Table 2. Number of	5	SA1	SA 2a	All Aims
3 ⁷³	(n=15), Control (n=15)	None		Controls	Incident AD	Prevalent AD	Metabolomes
otsinger-Reif	AD (n=40),	None	2 +	724	247	375	3,692
1. 2013 ⁵⁵	Control (n=38)		3 (or more) ++	760	529	260	4,647
ui et al. 2014 ⁴⁹	AD (n=46), Control (n=37)	AD (n=63), Control (n=67)	Totals	1484	776	635	8,339
raham et al.	MCI (n=16), MCI-AD (n=19), Control (n=37)	None					
forris et al. 018 ⁷⁵	AD (n=64), Control (n=62)	None	R. Mayeux, B. Vardarajan, G. Miller, Y. Gu., I. Ionita-Laza				
ena-Bautista et l. 2019 ⁷⁶	MCI-AD (n=29), Control (n=29)	None					
Iabartová et al. 019 ⁷⁷	AD (n=20), Control (n=13)	None					

The Irving Institute for Clinical and Translational Science

The Irving Institute for Clinical and Translational Research, funded by a National Institutes of Health Clinical and Translational Science Award (CTSA), serves as the cornerstone of translational science for the Columbia Precision Medicine Initiative.

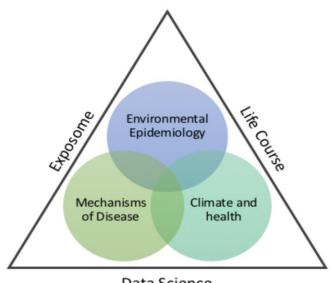
Data Science Institute

The Precision Medicine Initiative

Ultra-high resolution MS LTQ-FT LTQ-Velos Orbitrap Q-Exactive HF Thermo Fusion

Data extraction

Data Table m/z, RT, Intensity Quality metrics Biostatistics Bioinformatics


T Yu et al 2009 Bioinformatics 25:1930-6 JM Johnson et al 2010 Analyst 135: 2864-2870 Q Soltow et al 2013 Metabolomics 9:S132-S143 T Yu et al 2013 J Proteome Res 12:1419-27 S Li et al 2013 Plos Comp Biol 9:e1003123 K Uppal et al 2013 BMC Bioinformatics 14:15 K Uppal et al 2015 Frontiers Bioeng Biotech 3:87

DP Jones 2016 Tox Reports 3: 29-45

Exposome Training Efforts

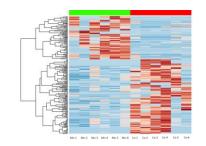
Data Science

These fellows will enhance their leadership skills by facilitating our workshops, bootcamps, and minicourses (machine learning, data visualization, **network science)** for the predoctoral trainees

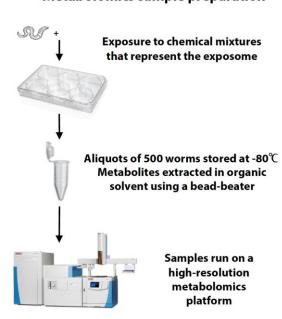
The Exposome 2nd Edition

A New Paradiam for the Environment and Health

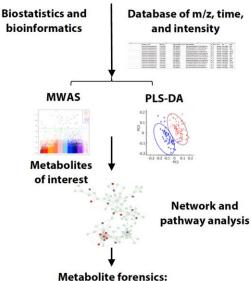
Authors: Gary W. Miller


Paperback ISBN: 9780128140796

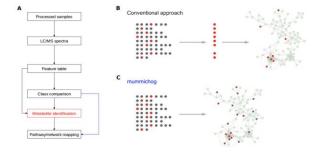
Imprint: Academic Press Published Date: 1st July 2020

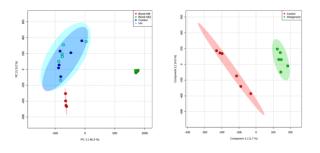

Page Count: 320

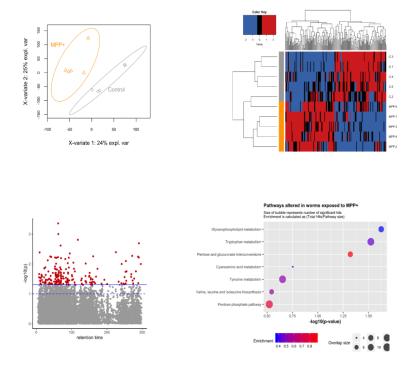
The metabolomic/exposomic analysis works in as few as 500 worms

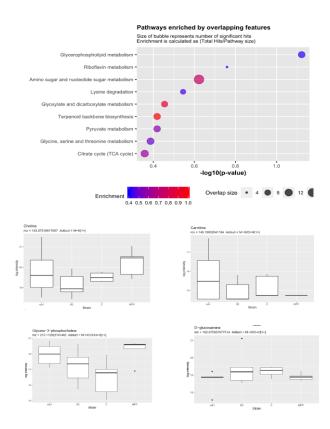


Metabolomics sample preparation




Metabolomics data processing


Data Table, m/z, RT, Intensity Quality metrics, Peak grouping/deconvolution



A) PLS-DA analysis comparing N2 worms with N2 worms treated with 1mM MPP+ **B)** Manhattan plot shows features higher (red) and lower (gray) in 1mM MPP+ treated N2's compared to untreated N2 worms **C)** Hierarchical clustering of features detected **D)** Top pathways altered in 1mM MPP+ treated N2 worms, using Mummichog

A) Mummichog analysis of overlapping patterns of pathway enrichment between *cat-1* (*ok411*) worms and N2 worms treated with MPP+

Global Exposome Harmonization Project

Validation inter/intra laboratory
Harmonization of exposome measures
Standardization of operating procedures
Radical transparency
Shared pooled standards
Shared bioinformatic platforms

Columbia, Mt. Sinai, Emory, Mayo Clinic, Yale, Brown (open to other participants)

s Inserm (France), Masaryk Univ (Czech Repub), Utrecht (Netherlands), Antwerp (Belgium), Helmholtz (Germany), Univ of Vienna (Austria), Imperial Univ (UK) Human Biomonitoring for the European Union (HBM4EU)

European Commission Human Exposome Network

EXPANSE: Exposome powered tools for healthy living in urban settings - Prof Roel Vermeulen, Institute for Risk Assessment Sciences, Utrecht University, The Netherlands

EQUAL LIFE: Early Environmental quality and life-course mental health effects – Dr Irene van Kamp, Senior Researcher, National Institute for Public Health and the Environment (RIVM), The Netherlands

LONGITOOLS: Dynamic longitudinal exposome trajectories in cardiovascular and metabolic non-communicable diseases – Dr Sylvain Sebert, University of Oulu, Finland

ATHLETE: Advancing tools for human early lifecourse exposome research and translation - Prof Martine Vrijheid, Barcelona Institute for Global Health, Spain

EXIMIOUS: Mapping exposure-induced immune effects: connecting the exposome and the immunome – Prof Peter Hoet, Catholic University of Leuven Belgium

HEDIMED: Human exposomic determinants of immune mediated diseases – Prof Heikki Hyöty, University of Tampere, Finland

HEAP: Human Exposome Assessment Platform - Prof Joakim Dillner, Karolinska Institute, Sweden

REMEDIA: Impact of exposome on the course of lung diseases – Dr Sophie Lanone, Research Director, French National Institute of Health and Medical Research (INSERM), France

EPHOR: Exposome project for health and occupational research – Dr Anjoeka Pronk, Senior Scientist, Netherlands Organisation for Applied Scientific Research (TNO), The Netherlands

 \sum Human Exposome Network and other + \sum in the Americas, Japan, European partners China, and India

....that rivals the Human Genome Project

Possible steps and principles

Commitment of collaboration to advance the field Shared pooled reference material Shared data and bioinformatic platforms Standardized confidence levels for identification Validation among laboratories (instrument-specific) Investigator exchange program Standardized operating procedures for harmonized projects Establishment of a steering/leadership committee

Conclusions

High-resolution mass spectrometry has become the *de facto* machinery for the **exposome (in biological and environmental matrices: plasma, urine, water, dust, air, passive samplers)**

Current technologies, computational workflows, throughput, and costs/sample are <u>insufficient</u> for the needs of the biomedical, clinical, and environmental research communities

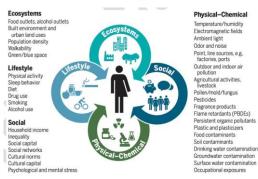
As such, a concerted effort to create fit-for-purpose, instrumentation, automation (technical and informatic), and computational systems is essential to balance $G \times E = P$

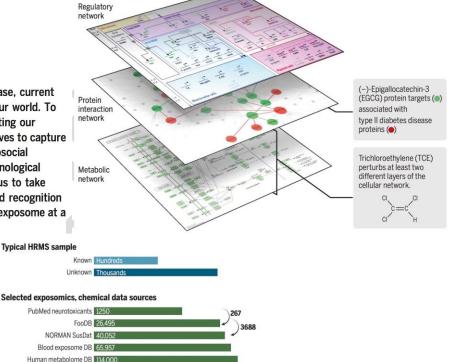
Organizers

Jarod Grossman *Agilent Technologies*

Anthony Macherone

Agilent Technologies & Johns Hopkins University School of Medicine




REVIEW

The exposome and health: Where chemistry meets biology

Roel Vermeulen^{1,2}*, Emma L. Schymanski³, Albert-Laszlo Barabási^{4,5,6}, Gary W. Miller⁷*

Despite extensive evidence showing that exposure to specific chemicals can lead to disease, current research approaches and regulatory policies fail to address the chemical complexity of our world. To safeguard current and future generations from the increasing number of chemicals polluting our environment, a systematic and agnostic approach is needed. The "exposome" concept strives to capture the diversity and range of exposures to synthetic chemicals, dietary constituents, psychosocial stressors, and physical factors, as well as their corresponding biological responses. Technological advances such as high-resolution mass spectrometry and network science have allowed us to take the first steps toward a comprehensive assessment of the exposome. Given the increased recognition of the dominant role that nongenetic factors play in disease, an effort to characterize the exposome at a scale comparable to that of the human genome is warranted.

The cell as a multilayer network

CompTox chem, dashboard 975.00

First-gen. PubChem metabolites >2 billion

PubChem compound >96 millio

Generated structures Millions of billion

Fig. 2. Chemical complexity of HRMS and the exposome. Top: Known versus unknown features in a typical HRMS measurement [data from (7)]. Bottom: Selected data sources relevant to the chemical exposome (10–14, 19). Arrows show the overlap of potential neurotoxicants in FooDB (http://foodb.ca/) and FooDB components in NORMAN SusDat (www.norman-network.com/nds/susdat/) (prioritized chemicals of environmental interest).

10 million

1 billion chemicals

1000

10.000 100.000

Science. 367: 392-396, January 24, 2020