From Food Waste to Innovative Bio-based Products

ainia

Pre-Conference Workshop FOOD 2030 12 October 2016

► Andrés Pascual Vidal, Head of Environment, Bioenergy & Hygiene.

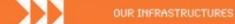
- Agriculture Engineer by Univ. Politécnica de Valencia (Spain)
- Specialist in Food Industries.
- 19 years experience on R&D projects, technological consultancy and training:
 - 4 years as project manager at the New Food Products Dept.
 - 15 years as Head of Environment, BioEnergy and Hygiene Dept.
- Chair of WG "Quality, Manufacturing and Sustainability" of the Spanish Food for Life Technology Platform.
- Knowledge Member of the Spanish Biogas Association.
- Member of the Executive Committee of EHEDG (European Hygienic Engineering and Design Group).

customer-led services · independence · confidentiality · integrity · commitment

We give support and add value to companies, leading innovation and technological development in a responsible and committed way

| More than 1.100 associated companies | More than 20 years of experience in applied R&D | | A staff of 200, mainly technologists | 12.000 m² of facilities |

We work for the Food, Pharma, Chemical and Cosmetic sectors


We are specialists in Food Technology | Biotechnology | Nanotechnology | Electronics and Communications | Chemical Technologies | Environmental and energetic technologies |

We provide Solutions for Food & Health | Food Quality & Safety | Design and Industrial Production | Sustainability | Packaging |

7 laboratories

10 pilot plants

Our infrastructures are prepared to respond to the technological needs:

>> 7 laboratories:

Chromatography | General Chemistry | Physical Tests (food and packaging materials) | Microbiology | Molecular Biology | Cell Culture Laboratory | Bio-Security Level P3 Laboratory |

> 10 pilot plants:

Unit Operations in food Processing | Biogas | Supercritical Fluid Technology (scf) | Packaging | New Product Development | Water | Hygiene | Bio-Production | Spectroscopy | Vision |

- >> 5 polyvalent and multifunctional rooms
- >> Researchers' room (100 people)
- 12.000 m2 of facilities
- Assembly hall (120 people)

4 Extractors x1000 L.

1st multi-purpose industrial supercritical CO2 extraction plant

ALTEX works as a **service company** offering industrial production under contract or test manufacturing.

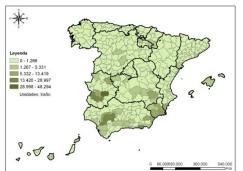
Applications:

-Obtaining nutraceutical products and dietary supplements such as: **vitamins**, **antioxidants** from plants or **essential oils**, fish oil or derivatives deodorised and purified, etc. Extraction, fractionation and purification of **herbal or medicinal plant extracts** for cosmetic and pharma applications.

AINIA developed a **Winery Waste Biorefinery**, including new **bioprocesses** like:

- -Fermentation of *Bacillus cereus group* on wine vinasses to be used as a "bioestimulant" of plants.
- **-Enzymatic** process of grape **peels/seeds** to aminoacids to be used as "biofertiliser".

► Anaerobic Digestion.


2007-2011

Food waste characterization and quantification.

DATABASE with 180 subcategories of agro-food waste in 330 Spanish subregions.

www.probiogas.es

Project data has been used to define the Spanish BioEconomy Strategic Plan 2020.

Agrupación	Descripción	Residuos	Uds	Agrupación	Descripción	Residuos	
G1_A	Purín de cerdo	218	t/año	Ve2_C	No conformes tubérculos	48	1/20
G2_A	Estiércol de vaca	26.712	t/año	Ve2_D	No conformes cítricos	0	1/2
G3_A	Gallinaza	5.424	t/allo	Ve2_E	No conformes frutales no cítricos	90	t/ai
64_A	Restos de otras especies	7.175	t/allo	Ve3_B	Transformación hortalizas	- 45	1/4
An1_A	Residuos matadero carne	14.403	t/año	Ve3_C	Transformación tubérculos	10	1/4
An1_B	Residues matadero avicola	0	t/año	Ve3_D	Transformación cibricos	0	1/2
An1_C	Residues de estabulación	3.162	t/año	Ve3_E	Transformación frutales no citricos	75	1/2
An1_D	Harinas C2	0	t/año	Ve3_F	Bagazo - Ind. cervecera	0	t/ai
An1_E	Lodos EDARI - cárnica	1.089	t/allo	Ve3_G	Alperujo 2F	0	1/4
An2_A	Lodos EDARI - láctea	59.403	t/año	Ve3_H	Alpechin 3F	0	1/4
An2_B	Lactosuero	0	t/año	Ve3_I	Residuos industria vino	0	1/0
An2_C	Residuos de productos lácteos y otros	11.591	t/año	Ve3_K	Residuos industria sidra	367	1/20
An3_A	Residuos de pescado	171	t/año	Ve3_L	Residuos industria azucarera	0	1/2
An3_B	Lodos EDARI - pescado	143	t/año	Ve4_E	Paja de cereal	261	1/4
Ve1_A	Excedentes cereales	0	t/año	Ve5_A	Lodos EDARI - transformados vegetales	0	1/2
Ve1_B	Excedentes hortalizas	209	t/año	Ce1_A	Cultivos energéticos	0	t/ai
Ve1_C	Excedentes tubérculos	240	t/año	1811_A	Glicerina	207	t/ai
Ve1_D	Excedentes citricos	0	t/allo	1842_A	Residuos DDGS (bioetanol)	0	1/8
Ve1_E	Excedentes frutales no citricos	224	t/año	1812_8	Residuos pulpa remolacha (bioetanol)	0	1/0

FICHA	RESIDUO CARACTERIZADO	TIPO	CATEGORÍA	SUBCATEGORÍA		
An1_100	HARINA DE AVE	An	An1	An1.110		
	PARÁMETROS IMPORTANTES	DEL PROCESO	ANAEROBIO			
ANÁLISIS DETALLADO	PROM_CSR	MIN_CSR	MAX_CSR	FUENTE	OBSERV	
ST - %	98,8			Probiogas		
SV - %ST	81,0			Probiogas		
pH a 20ºC	6,1			Probiogas		
CE - mS/cm	3.450,0			Probiogas		
N-NH4 - mg/kg	5.684,0			Probiogas		
DQO total - mgO2/kg	772.215,0			Probiogas		
DQO soluble - mgO2/kg	220.776,0			Probiogas		
COT - mg/kg	7.829,0			Probiogas		
Alcalinidad - mg CaCO3/kg	1.000,0			Probiogas		
AGV - mg HAc/kg	2.074,7			Probiogas		
NKT - mg/kg	90.469,0			Probiogas		
P total - mg/kg	32.545,0			Probiogas		
K total - mg/kg	5.781,0			Probiogas		
C/N						
COT/Norg	0,1			Probiogas		
Biogás - NL/kg SV	660,0			Probiogas		
Metano - NL/kg SV	513,0			Probiogas		

Demonstration of a new **INTEGRAL** Biogas and Biodiesel valorization system for food waste from city restaurants.

2009-2011

Awarded Project LIFE Best Environment Projects 2012

www.integral-b.com

1st car in Spain to use **biomethane from agro-food** waste as a biofuel.

2010-2013

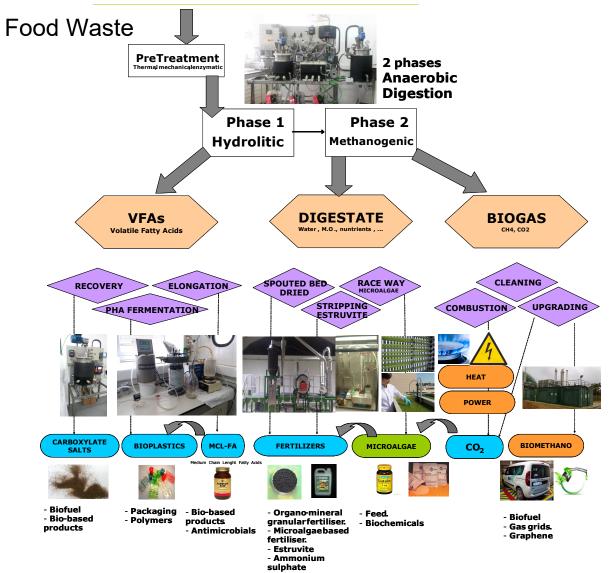
www.agrobiomet.es

IEE/13/477/SI2.675801

2014-2016

Sustainable **small-scale biogas production** from agro food waste for energy self-sufficiency

www.biogas3.eu



From food waste biogas plants to biorefineries.

Furte biogas plant based in the **Biogas plant TODAY** concept of BIOREFINERY 1- Biogas: 1-Plataform **VFAs** (carboxylates): Carboxylate salts (as building block) Power. Heat •PHA (bioplásticos). Biomethane MCL-FA. 2-Digestate. 2-Plataform digestate • Compost. New biobased solid fertilisers like • Direct land application. ammonium sulphate or estruvite. Microalgae for biobased products, specially for biofertilisers. 3. Plataform biogas •Power, heat and biomethane. CO2 and CH4 to biochemicals and biobased products (bioplastics, etc.)

From food waste biogas plants to biorefineries through 2-phases anaerobic digestion

Drovocto ID1-DDOVECTO DADA EL

72,68

VS (g VS/L)

18,17

18,17

0,00

4,54

Software helping to select best biorefinery configuration

yectos	vecto IDI-	PROTE	CIO PARA E	L												
oyecto para el otal (L/d) 10.000	CLIENTE 1 Carbox. (%)		10 R. Racewa	□ Caldera □ Cogener □ Biometa	ación	K	P •	f_{x}						VER DA	TOS VER	R TABLA
stratos																
Sustrato	Q (kg/d)	Q (I/d)	Volume Ratio (%)	COD (g O2/L)	NTK (g N/L)	Phosporous (mg P/L)	ALK. (g CaCO3/L)	TS (g TS/L)	VS (g VS/L)	NH4+ (g N/L)	Potassium (mg/L)	Chloride (g/L)	Sulphate (g SO42-/L)	Liq. Fract. (g liq/kgw)	Density (kgw/L)	BMP (%)
Estiércol Cerdo		2.500		32,5								0,85	0,03			0,6
Estiércol Vaca	7.500	7.500	75	154	5,5	5.374	5,4	132	93	1,486	5.000	19,8	0	891,5	1	(
Estiércol Pollo	0	0	0	262	21,75	5.664	0	250	175	1	8.963	0	0	750	1	0,6
MEZCLA	10.000	10.000	100	123,625	4,95	4.305,5	5,925	103,325	72,675	1,8895	4.575	15,0625	0,0075	914,375	1	0,718

Evolución GAS (m3/d) Caracteristicas ENT. AD1 CARBOX ENT. AD2 SOLIDO SPOUTED LIQUIDO STRUVITE STRIPPING m Algas (strp) m Algas (Dir) m Algas COD (q O2/L) 123,63 123,63 123,63 593,40 24,73 234,11 0,00 1,20 1,20 0,76 NTK (g N/L) 4,95 4,70 4,70 0,00 4,47 14,98 178,95 3,86 3,52 1,56 0,58 0,20 0,78 Phosporous (g P... 0,00 4,31 18,51 3.537,63 0,98 1,09 0,45 1,47 4,31 4,31 4,31 76,47 1,02 13,97 ALK. (g CaCO3/L) 5,93 5,93 5,93 5,93 6,58 2,93 3,04 5,93 0,00 TS(g TS/L) 103,33 37,92 37,92 24,29 230,00 970,00 1,09 8,16 0.00 10.64 10,64 9,46 7,07

Kes	uicados							
	Resultados	CARBOXILATOS	SPOUTED	GAS	STRUVITA	STRIPPING	m ALGAS	TOTAL
+	Masa (Kg)							0,00
	Importe (€)	0,00	3.750,32	6.121,49	284,47	0,00	802,98	10.959,26

43,01

0,00

1,87

1,87

1,66

2,17

0,33

2,50

Challenge #1 TO CREATE NEW BIO-BASED VALUE CHAINS

To design **innovative models** to enable the build-up of **sustainable** new, **circular**, **local** bio-based value chains

Challenge #2 TO BOOST THE CONCEPT OF BIOREFINERY IN NEW AND EXISTING BIOINDUSTRIES

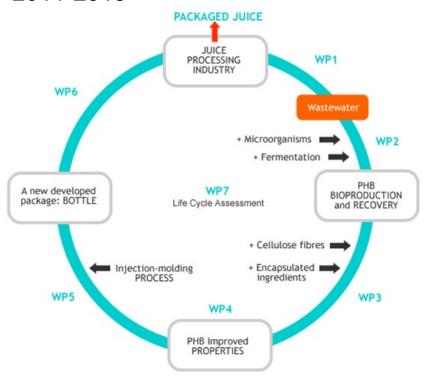
Can a existing food factory or a waste treatment be transformed in a biorefinery?

Challenge #3 NEW BIOTECHNOLOGY DEVELOPMENTS TO ENABLE FOOD WASTE CONVERSION

To develop advanced bioconversion technologies of food waste into bio-based products.

Challenge #4 WASTE WATER OF FOOD INDUSTRIES AS A SOURCE OF BIORESOURCES

Recovery and/or bioconversion of valuable components, as well as water reuse



FP7 NMP.2011.2.3-1.

To develop a bioplastic (PHB, polyhydroxybutyrate) by fermentation of juice processing wastewater.

2011-2015

www.phbottle.eu

THANK YOU FOR YOUR ATTENTION

