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1. Introduction

Europe, which hosts strong higher education in-
stitutions and scientists, has a well-performing 
science system overall (European Commission, 
2020; Schiermeier, 2019; OECD, 2017). How-
ever, the value of Europe’s science base only 
materialises once science reaches the market, 
a sine-qua-non condition for generating wel-
fare improvements and economic benefits. 
Turning science into innovation is a particularly 
challenging task, and policymakers (and, to a 
certain extent, administrators at higher edu-
cation institutions and public research organi-
sations) have been struggling to provide the 
environment that maximises the appropriation 
of science.

Leaving aside the difficulty of organising pri-
vate (and public) markets to achieve this aim, 
policy analysts lack data, metrics and methods 
to guide them. It is notably complex to assess 
the impact of public funding on the production 
of science and, a fortiori, on innovation. The 
outcomes (‘innovations’) are hard to measure, 

and the lags between science and innovation 
are long and heterogeneous. Furthermore, 
establishing the ‘but for’ baseline (so-called 
counterfactual outcome) is notoriously difficult 
– concretely, establishing the innovation output 
we would have had without a specific policy 
intervention. As a result, scholarly research has 
focused on documenting case studies (Bas-
tianin et al., 2021) or evaluating specific fund-
ing programs (Li and Agha, 2015; Azoulay et 
al., 2019).

One key piece of information that scholars and 
analysts have been missing so far at large 
scale concerns how science translates into ac-
tual products. Getting such data is critical to 
improving our understanding of the innovation 
ecosystem and, ultimately, to devising the ap-
propriate policy tools and incentive schemes. 
Some recent research has analysed the extent 
to which scientific publications by universities 
reach industry by systematically tracking pub-
lications that are cited in patent documents 

Summary

Evaluating the extent to which scientific re-
search findings reach the market has proven 
to be a challenging task for scholars and policy 
analysts alike. Attempts have been confined to 
case studies of successfully commercialised 
research and large-scale studies of scientific 
publications cited in patents (as proxies for 
successful innovations). However, many patents 
are never commercialised. Besides, consumers 
do not buy patents, but products that embed 
these patents. This chapter provides proof of 
concept of a method that enables tracking of 

ideas as they progress from the lab to the 
market, focusing on scientific findings from 
Europe. The method exploits novel data on 
patent-protected products and links these 
patents to scientific articles. It then derives 
several stylised facts about, among others, 
the gestation lags of science. On average, 
today’s investments in science will reach the 
market in about 20-25 years, with surpris-
ingly little difference across scientific fields. 
The method appears to be a promising one to 
perform research evaluations of various kinds.
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(Jefferson et al., 2018). However, the mere fact 
that a patent cites a scientific publication does 
not offer evidence of real-world impact. Indeed, 
not all patents are commercialised, and a large 
majority of patents are ‘worthless’ (Lemley and 
Shapiro, 2005; Moore, 2005). Besides, consum-
ers do not buy patents – they buy products that 
embed these patents.

The present chapter attempts to trace ideas as 
they progress from the lab to the market by 
identifying the science behind a set of high-tech 
goods. It observes the science on which more 
than 6 000 high-tech goods build by exploiting a 
novel approach that has never been deployed 
at scale. The approach involves searching the 
web for patent marks, indicating which patents 
protect a firm’s products. Therefore the analy-
sis also serves as a feasibility study that opens 
the door to more fine-grained analyses of the 
determinants of science’s market reach. 

The chapter uses the data to derive several 
stylised facts about the market reach of sci-
entific findings from the European continent 
(EU, UK and Switzerland). The most notable 
finding is that the gestation lags from the lab 
to the consumer are long. On average, today’s 
investments in science will reach the market in 
about 20-25 years, with surprisingly little dif-
ference in gestation lags across scientific fields. 
These gestation lags typically exceed the policy 
timeframe and, therefore, pose a challenge to 
policy design and evaluation.

The rest of the chapter is organised as follows. 
Section 2 presents the data for the analysis. 
Section 3 derives some stylised facts from the 
data. Section 4 concludes by discussing the 
policy implications of the findings.
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2. Data

1	 The project is conducted at the Ecole Polytechnique Fédérale de Lausanne, Switzerland. It was started as a pilot funded by 
the US National Science Foundation (NSF).

The data for the present analysis relies on two 
primary sources of information: one that links 
products to patents and another that links pat-
ents to scientific papers. Data on product-patent 
links come from a novel research project, called 
IPRoduct – a contraction of the terms ‘intellec-
tual property right’ (IPR) and ‘product’1. IPRoduct 
scouts the web in search of associations between 
patents and products by exploiting information 
contained in virtual patent marking (VPM) web-
pages. VPM is the online provision of constructive 
notice to the public that an article is patented. 
It is the modern equivalent of physical marking, 
whereby patent numbers were physically printed 
on products. The marking statute is an old pro-
vision in US patent law, codified under Section 
287(a) of Title 35 of the US Code. In 2011, the 
Leahy-Smith America Invents Act (AIA) added a 
new method of marking to the statute, allowing 
patentees to affix the word ‘patent’ or ‘pat.’ on 
the article along with a URL of a webpage that 
associates the patented article with the patent 
number(s). de Rassenfosse (2018) and de Ras-
senfosse and Higham (2020) provide detailed 
explanations of innovative firms’ incentives to 
adopt patent marking. More information on the 
project is available at www.iproduct.io.

There is no VPM provision in the patent laws of 
European countries. VPM documents relate to US 
legislation and hence cover products sold in the 
USA. However, they offer a rich source of infor-
mation for studying the reach of European sci-
ence into the market for two reasons. First, the 
IPRoduct database includes data on European 
firms selling in the USA, as Figure 15-1 exempli-
fies with the VPM webpage of Philips, the Dutch 
multinational conglomerate company. Innova-
tive European firms that sell patent-protected 
products in the USA have the same incentives as 
US firms to virtually mark their products. Second, 

scientific knowledge is well known to spill across 
international borders (e.g. Lee, 2006; Hassan and 
Haddawy, 2013; Tang and Hu, 2013). US firms 
exploit science produced not only in the USA but 
also in Europe. Hence, the IPRoduct database al-
lows us to study the reach of European science. 
Having noted this aspect of the data, the reader 
should bear in mind that focusing on products 
sold in the USA filters out products sold only 
in Europe and science that non-EU firms never 
picked up.

Data on patent-paper links come from Marx 
and Fuegi (2020) and Lens.org. Both databases 
source the raw data by parsing the full text 
of patent documents in search of citations to 
scientific papers. A link between patent A and 
paper B arises when patent A cites scientific 
paper B (either on the front page or the body of 
the text). A number of recent research studies 
have used such data to assess the reliance on 
science by patent assignees and inventors (e.g. 
Ahmadpoor and Jones, 2017; Arora, Belenzon 
and Sheer, 2021; Fleming et al., 2019).

The majority of patent-protected products in the 
IPRoduct dataset do not rely on science (or, more 
precisely, have patents that do not make a direct 
reference to scientific papers). We find that about 
37 % of products in IPRoduct rely on science, 
totalling 6 443 products. These products are 
covered by 8 702 unique US patents (with some 
protecting more than one product). Five patents 
protect these products on average. However, the 
distribution of the number of patents protecting 
products is highly skewed, with a median of 
2 patents and a maximum of 807 patents (and 
an interquartile range of 3 patents). Patents in 
the sample collectively cite 42 473 unique sci-
entific papers (with some papers being cited by 
more than one patent).
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Figure 15-2 presents the count of scientific pa-
pers by the sector of activity associated with 
the high-tech goods. The vast majority of pa-
pers were published between 1980 and 2010 
(see Figure 15-4). There is a predominance of 
publications covering health-related products, 
but the sample covers a wide range of sectors, 
including farming, consumer electronics and 
building materials. The following figure also 
provides a breakdown by field of science. It 

shows that biotechnology products, computer 
software and farming rely primarily on publi-
cations in natural sciences. In contrast, phar-
maceuticals and medical devices rely primarily 
on publications in medical and health sciences. 
Publications in engineering and technology are 
most prevalent in consumer electronics.

Having assembled the data, the following section 
turns to analysing them.

FIGURE 15-1: Philips’ patent marking webpage

Science, Research and Innovation Performance of the EU 2022
Notes: Taken from <https://www.philips.com/a-w/about/innovation/ips/contact-and-support/patent-marking.html>, last accessed 
13 September 2021.
Stat. link: https://ec.europa.eu/assets/rtd/srip/2022/figure-15-1.xlsx

https://ec.europa.eu/assets/rtd/srip/2022/figure-15-1.xlsx
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FIGURE 15-2: Distribution of scientific publications by sector of activity

Science, Research and Innovation Performance of the EU 2022
Notes: Count of unique scientific publications cited by patents protecting the high-tech goods in the sample by sector of activity. 
High-tech goods are classified according to the LinkedIn sector of activity to which the commercialising company belongs. 
Sectors with more than 100 publications are reported.
Stat. link: https://ec.europa.eu/assets/rtd/srip/2022/figure-15-2.xlsx

https://ec.europa.eu/assets/rtd/srip/2022/figure-15-2.xlsx
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FIGURE 15-3: Distribution of scientific publications by sector of activity  
and field of science

Science, Research and Innovation Performance of the EU 2022
Notes: Count of unique scientific publications cited by patents protecting the high-tech goods in the sample by sector of activity 
and field of science. High-tech goods are classified according to the LinkedIn sector of activity to which the commercialising 
company belongs. The allocation into fields relies on OECD’s field of science and technology classification (OECD, 2007).
Stat. link: https://ec.europa.eu/assets/rtd/srip/2022/figure-15-3.xlsx
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3. Stylised Facts

2	 One potential explanation of the difference in R&D gestation lags is that we focus exclusively on commercialised products 
whereas models that infer gestation lags from statistical models also include process innovations, which are implemented 
internally by the firm (presumably at a fast rate). Another, possibly concurrent, reason is that we observe the correspond-
ence between patents and products with high precision whereas models that infer lags from statistical models are neces-
sarily imprecise.

Science and technology 
gestation lags

The data inform us about the time it takes for sci-
ence and technology to reach consumers. We call 
these time lags the ‘gestation lags,’ although we 
note that the literature sometimes uses the term 
‘application lags’ (e.g. Kafouros and Wang, 2008). 
For convenience, we refer to ‘science’ when dis-
cussing scientific papers and ‘technology’ when 
referring to patent documents. 

Figure 15-4 depicts the distribution of the pub-
lication years of scientific papers behind to-
day’s products and the distribution of the filing 
years of patents protecting these products. For 
the most part, science that led to today’s prod-
ucts was published during the 1990s, with the 
median being in the mid-1990s. In other words, 
it takes about 25 years for scientific findings 
to reach the market. Notice that a significant 
number of scientific papers were published in 
the 1980s and earlier, providing evidence that 
the science base has a long-lasting effect.

Today’s products embed technology developed 
more than 10 years ago, based on patent filing 
dates. Previous research has established that 
the lags between R&D investments and patent 
filing are very short, about 1 year on average 
(de Rassenfosse and Jaffe, 2018), implying 
that today’s products exploit R&D activities 
performed in the mid-to-late 2000s. Note, 
however, that we do not observe when these 
products appeared on the market. 

All we know is that these products are still 
available today. Should these products have 
been released on average 3 years ago (which 
is a reasonable assumption), it would take less 
than 10 years for R&D investments to start 
generating economic returns. 

Despite the uncertainty about product release 
dates, the R&D gestation lags reported herein 
are relatively long compared to previous esti-
mates. Examining the lag between R&D invest-
ments and their impact on the profits of US 
firms, Ravenscraft and Scherer (1982) estimated 
that it is about 4 years. In a similar analysis, Lev 
and Sougiannis (1996) found that the benefits 
of R&D are usually maximised in 2 or 3 years. 
Esposti and Pierani (2003) calibrated a model 
of knowledge-capital formation and came up 
with a gestation lag of 6 years for public R&D 
investment in Italian agriculture. The contrast 
with the literature on productivity growth is 
most striking, which generally assumes that 
R&D investment becomes productive as soon 
as, or soon after, it is put in place. For instance, 
Corrado, Hulten and Sichel (2009) consider 
that R&D investments instantaneously trans-
late into productivity growth, whereas Li and 
Hall (2020) assume a 2-year lag. Our data 
challenge this assumption2.

An apparent difference between the distributions 
of papers and patents is the fatter tail for 
scientific papers, suggesting that old science 
contributes to today’s products, but old technology 
does not. 
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There may be some truth to this claim, but the 
observed phenomenon is partly an artifact of 
the data. Since patent rights expire a maximum 
of 20 years after the filing date, high-tech 
goods inevitably lose patent protection even if 
these goods are still on the market. VPM web-
pages cover active patent rights, which poten-
tially truncate the left tail of the distribution.

Figure 15-5 provides a breakdown of the ges-
tation lags by main research field. The tech-
nology distributions look surprisingly similar 
across fields, with the median filing year being 
systematically just below 2010. The difference 
across fields is more pronounced for science 
than for technology, with gestation lags being 
longest for agricultural sciences and natural 
sciences (median in the mid-1990s) and short-
est for social sciences and humanities (SSH) 
(median in the late 1990s). However, there is 
overall little heterogeneity across fields.

The literature often points to the long gesta-
tion lags for products relying on medical and 
health sciences (e.g. Dranove and Meltzer, 
1994; Lexchin, 2021), with some drugs and 
medical devices having to go through lengthy 
regulatory approvals. However, when consid-
ering a broad set of products in this area, and 
not just approved drugs, the data suggest 
that the lags from the lab to the market are 
not significantly different from those in other 
fields on average.  

FIGURE 15-4: Distribution of the publication years of science and technology 
contained in today’s products

Science, Research and Innovation Performance of the EU 2022
Notes: An observation corresponds to a product-patent-paper triad.
Stat. link: https://ec.europa.eu/assets/rtd/srip/2022/figure-15-4.xlsx

Median: Scientific Publication Year
Median: Patent Filing Year
Scientific Publication Year
Patent Filing Year

https://ec.europa.eu/assets/rtd/srip/2022/figure-15-4.xlsx
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FIGURE 15-5: Distribution of the publication years of science and technology 
contained in today’s products, by field of science

Science, Research and Innovation Performance of the EU 2022
Notes: The allocation into fields relies on OECD’s field of science and technology classification (OECD, 2007). Allocation based 
on scientific papers. An observation corresponds to a product-patent-paper triad.
Stat. link: https://ec.europa.eu/assets/rtd/srip/2022/figure-15-5.xlsx

Median: Scientific Publication Year
Median: Patent Filing Year
Scientific Publication Year
Patent Filing Year

Median: Scientific Publication Year
Median: Patent Filing Year
Scientific Publication Year
Patent Filing Year

Median: Scientific Publication Year
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Patent Filing Year
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Patent Filing Year

Median: Scientific Publication Year
Median: Patent Filing Year
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Median: Patent Filing Year
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Patent Filing Year

https://ec.europa.eu/assets/rtd/srip/2022/figure-15-5.xlsx
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The figure 15-6 presents an alternative view 
of the lags. It depicts the number of years 
elapsed between the scientific publication 
and the product commercialisation dates 
(assumed to be 2017 for most products)3. In 
medical and health sciences, the average lag 
is about 19 years, and the mode is at about 
15 years – shorter than in natural sciences 
and in engineering and technology.

3	 We have chosen the year 2017 based on manual inspection of a handful of products in the sample. When a patent was 
filed after 2017, we set the product commercialisation date to one year after the patent filing date.

4	 We could retrieve data such as DOI and authors’ affiliations for 13 022 of these papers.

Institutional perspective

Among scientific papers for which we were 
able to retrieve metadata, 56 % are published 
by authors from institutions in the USA (pos-
sibly involving authors from other countries 
but none from Europe), 23 % are published 
by authors from Europe (including the United 
Kingdom and Switzerland, and possibly in-
volving authors from other countries but none 
from the USA), 3 % are published by authors 
from both blocs, and the remaining 18 % are 
published by authors from other countries4.

FIGURE 15-6: Distribution of science gestation lags by field

Science, Research and Innovation Performance of the EU 2022
Notes: The allocation into fields relies on OECD’s field of science and technology classification (OECD, 2007). Allocation based 
on scientific papers. An observation corresponds to a product-patent-paper triad.
Stat. link: https://ec.europa.eu/assets/rtd/srip/2022/figure-15-6.xlsx

https://ec.europa.eu/assets/rtd/srip/2022/figure-15-6.xlsx
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There is no point in interpreting the difference 
in the number of papers between the USA and 
Europe because sample composition affects 
these differences (remember that VPM is a 
provision in US patent law). However, hetero-
geneity within Europe is worth commenting 
on. We have manually cleaned the affiliation 
data for the top 50 European universities (be-
longing either to the EU-27, Switzerland or 
the UK) listed in the Quacquarelli Symonds 
QS World University Rankings5.   

Figure 15-7 provides a breakdown of the con-
tribution of universities’ scientific output to the 
development of high-tech goods. Universities in 
the UK dominate the list, with three UK universi-
ties on the podium and six universities in the top 
10. Given the long gestation lags documented 
in the previous section, the data do not tell us 
much about universities’ current performances. 
Therefore, we should not use the data pre-
sented therein to assess the performance of 
individual universities. However, they show the 
Anglo-Saxon model’s dominance concerning 
technology transfer (e.g. Cooke, 2001; Casper 
and Karamanos, 2003; Searle et al., 2003). An 
additional explanation for the dominance of 
UK universities is the strong economic ties and 
cultural proximity with the USA. 

5	 The top 50 universities are, in that order, University of Oxford (UK), ETH Zurich (CH), University of Cambridge (UK), Imperial 
College London (UK), UCL (UK), EPFL (CH), The University of Edinburgh (UK), The University of Manchester (UK), King’s College 
London (UK), LSE (UK), Technical University of Munich (DE), Université PSL (FR), Delft University of Technology (NL), University 
of Bristol (UK), University of Amsterdam (NL), Ecole Polytechnique (FR), The University of Warwick (UK), Ludwig-Maximil-
ians-Universität München (DE), Ruprecht-Karls-Universität Heidelberg (DE), University of Zurich (CH), Lomonosov Moscow State 
University (RU), University of Copenhagen (DK), University of Glasgow (UK), Sorbonne University (FR), KU Leuven (BE), Durham 
University (UK), University of Birmingham (UK), University of Southampton (UK), University of Leeds (UK), The University of 
Sheffield (UK), University of St Andrews (UK), Lund University (SE), KTH Royal Institute of Technology  (SE), University of Notting-
ham (UK), Trinity College Dublin, The University of Dublin (IE), Technical University of Denmark (DK), University of Helsinki (FI), 
University of Geneva (CH), University of Oslo (NO), University of Bern (CH), Queen Mary University of London (UK), Wageningen 
University (NL), Humboldt Universität zu Berlin (DE), Eindhoven University of Technology (NL), Utrecht University (NL), Uppsala 
University (SE), Aalto University (FI), Leiden University (NL), University of Groningen (NL), and Freie Universitaet Berlin (DE).

6	 Note that the data on academic staff correspond to the year 2016. These data change slowly over time and give us an 
indication of the relative size of institutions. Given the long gestation lags, more recent numbers are not relevant for the 
purpose of the present analysis.

However, the data also indicate the strong per-
formance of the ‘Scandinavian model’ (e.g. Ben-
neworth et al., 2009; Bengtsson, 2017), with 
four universities in the top 50 for a population 
of about 21 million inhabitants among Norway, 
Sweden and Denmark.

Table 1 shows the distribution by field of cited 
papers for universities in the top ten. Per-
forming an in-depth statistical analysis of the 
factors that drive universities’ market reach is 
out of the scope of the present paper. Never-
theless, the table also reports the size of the 
universities, as proxied by the number of aca-
demic staff6. Two main findings emerge from 
the table. First, although university size seems 
to correlate with universities’ position in the list, 
it is certainly not the only driver. In terms of the 
number of academic staff, the first-listed insti-
tution (Imperial College London) is three-fifths 
the size of the second-listed institution (Uni-
versity of Oxford), and the largest institution 
in the table (K.U. Leuven) is followed by one 
of the smallest (University of Southampton). 
However, we note that the last three univer-
sities listed are also the smallest, giving some 
credit to the hypothesis that size matters.
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Second, it is remarkable to observe the sub-
stantial heterogeneity across universities. 
Overall, medical and health sciences form 
the most prominent category. However, this 
result partly reflects a sample-composition 
effect, as high-tech goods in the sample in-
clude many pharmaceuticals and medical de-
vices (see  Figure  15-3). Medical and health 
sciences accounts for more than 80 % of all 
cited publications by the University of Bir-
mingham, Imperial College London, KU Leuven 
and the University of Amsterdam. By contrast, 
natural sciences account for more than 80 % 
of the cited publications by the University of 
Edinburgh and the University of Oxford. Other 

universities have a more balanced profile, in-
cluding the University of Southampton and 
the University of Leiden, with close to 20 % of 
publications in engineering and technology. Of 
course, this table tells us nothing about how 
‘relevant’ a given field is in a given university. 
For instance, consider that university U has 
more than 20 % of publications cited by pat-
ents protecting products in field F. However, 
these publications account for a mere 5 % of 
U’s total number of scientific publications. In 
that case, field F is very relevant in comparison 
to the other fields.

FIGURE 15-7: Distribution of cited papers by originating university
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10.3% Others

1.3% The university of Manchester
1.3% The university of Glasgow

1.6% Ludwig-Maximilians-Universität München
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1.9% Ruprecht-Karls-Universität Heidelberg

2.0% University of Helsinki 

2.5% University of Copenhagen 

2.5% University of Zurich 

2.9% University of Leeds 

3.2% University of Bern 

3.8% University of Southampton

4.9% University of Edinburgh

5.5% University of Amsterdam

6.9% University of Birmingham

7.2% University of Cambridge

7.9% University of Oxford

13.2% Imperial College London

4.4% KU Leuven  

3.3% Uppsala University 

3.5% Leiden University 

2.1% UCL 

1.4% Utrecht University 

2.4% Lund University 

1.5% Universityof Geneva 

Science, Research and Innovation Performance of the EU 2022
Stat. link: https://ec.europa.eu/assets/rtd/srip/2022/figure-15-7.xlsx

https://ec.europa.eu/assets/rtd/srip/2022/figure-15-7.xlsx
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Figuure 15-8: Distribution of cited papers by field

Science, Research and Innovation Performance of the EU 2022
Notes: Data on academic staff sourced from the European Tertiary Education Register (ETER) for 2016 (most recent year 
available). Only the three largest fields reported (agricultural sciences, social sciences, and humanities not reported).
Stat. link: https://ec.europa.eu/assets/rtd/srip/2022/figure-15-8.xlsx

Field of publication

University Academic 
staff (FTE)

Natural 
sciences

Engineering & 
technology

Medical & 
health sciences

Imperial College 3 900 7 % 1 % 92 %

U. of Oxford 6 390 82 % 1 % 16 %

U. of Cambridge 5 590 18 % 3 % 78 %

U. of Birmingham 3 040 4 % 0 % 95 %

U. of Amsterdam 2 779 9 % 4 % 86 %

U. of Edinburgh 4 215 92 % 1 % 3 %

K.U. Leuven 7 094 6 % 3 % 90 %

U. of Southampton 2 730 35 % 17 % 48 %

Leiden U. 2 303 17 % 19 % 64 %

Uppsala U. 2 970 36 % 5 % 59 %

https://ec.europa.eu/assets/rtd/srip/2022/figure-15-8.xlsx
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4. Policy discussion

This chapter provides proof of concept of a 
method that enables tracking of ideas as they 
progress from the lab to the consumer. Schol-
ars and policy analysts, who have lacked such 
data in the past, can use the method to study 
factors that facilitate technology transfer (at 
the university level or the level of the regional 
or national higher education systems, see Wil-
liams et al., 2013). Having applied the method 
to study the reach of European science into the 
market, the empirical analysis has uncovered 
five main findings that have policy implications.

First, the gestation lags from the lab to the con-
sumer are long. On average, today’s investments 
in science will reach the market in about 20-25 
years. While experts are familiar with such lags in 
products exploiting medical and health sciences, 
the figure is remarkably stable across scientific 
fields. These long lags exceed the typical policy 
timeframe and, consequently, pose an immediate 
challenge to policy evaluation.

Second, the science base has a long-last-
ing effect, with some papers published in the 
1980s and earlier still contributing to today’s 
technological progress. Although this finding 
does not come as a surprise, it is a helpful re-
minder that the opposite also holds: reducing 
the knowledge base today has long-lasting 
consequences.

Third, all fields of science contribute to com-
mercial products, including SSH. However, 
translation (of the sort we can observe in our 
data) occurs primarily in natural sciences and 
medical and health sciences. Scientific papers 
in engineering and technology represent the 
third-largest group. We caution against using 
this finding to conclude that SSH research 
has no real-world impact. Our method tracks 
science embedded in products, which is not 
a typical outcome for SSH research. For SSH, 

this research requires alternative evaluation 
methods that consider their social and polit-
ical impacts (Reale et al., 2018; Pedersen et 
al., 2020).

Fourth, universities exhibit very heterogeneous 
profiles regarding the fields of science that 
are being translated. Whereas some universi-
ties are very strong in one field, others have 
a more balanced profile. This finding suggests 
that there is no dominant discipline when it 
comes to research impact. Note that, given the 
incomplete data on which the analysis builds, 
the list of universities should not be taken as a 
ranking  especially not a ranking of the current 
performance of universities given the long ges-
tation lags uncovered above.  Although there is 
merit in benchmarking universities by exploit-
ing such data in the future, a careful analysis 
that accounts for various statistical and data 
collection pitfalls is warranted.

Fifth, turning to country-level ‘performances’ on 
the European continent, the UK university system 
seems to contribute the most to high-tech goods, 
probably driven by the biotechnology revolu-
tion (see, e.g., Searle et al., 2003). Interestingly, 
Scandinavian countries are punching above their 
weight, with four universities in the top 50. It 
would be worth investigating the reasons behind 
this phenomenon in follow-on research.

More generally, this chapter has illustrated that 
data for Europe are patchier than for the USA. 
However, this does not need to be the case. 
To help us collect data, the inclusion of virtual 
marking provisions in the patent laws of Euro-
pean countries would be particularly helpful. To 
improve further the data infrastructure of EU 
science policy, systematically tracing linkages 
from scientific papers to European patents – 
and making the data openly available – seems 
a natural first step.  
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