Quarterly R&I literature review
2023/Q3-4
R&I for skills and competitiveness
R&I for skills and competitiveness

European Commission
Directorate-General for Research and Innovation
Directorate G — Common Policy Centre
Unit G.1 — Common R&I Strategy & Foresight Service

Contact Erik Canton, Acting Head of Unit G1, Acting Chief Economist
 Alessio Mitra, review coordinator, Unit G1

Email Erik.canton@ec.europa.eu
 Alessio.MITRA1@ec.europa.eu
 RTD-ECONOMIC-ANALYSIS@ec.europa.eu

European Commission
B-1049 Brussels

Manuscript completed in [March] [2024]

This document has been prepared for the European Commission, however it reflects the views only of the authors, and the European Commission shall not be liable for any consequence stemming from the reuse.

© European Union, 2024

The reuse policy of European Commission documents is implemented by Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Unless otherwise noted, the reuse of this document is authorised under a Creative Commons Attribution 4.0 International (CC-BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/). This means that reuse is allowed provided appropriate credit is given and any changes are indicated.

For any use or reproduction of elements that are not owned by the European Union, permission may need to be sought directly from the respective rightholders. The European Union does not own the copyright in relation to the following elements:

Image credits:
Page 3: © AI generated image using ChatGPT4
Page 11: © AI generated image using ChatGPT4
R&I for skills and competitiveness

Quarterly R&I literature review 2023/Q3-4

Literature review
INTRODUCTION

This literature review is developed by the ‘Economics of R&I’ team of the Chief Economist unit of DG Research and Innovation. It provides a brief summary of a selection of recent publications on R&I economics and policy. Contributors for this edition: Valentina Di Girolamo, Gaelle Debree, Alina Knoblach, Alessio Mitra (review coordinator), Jan-Tjibbe Steeman.

Competitiveness and skills development are a pivotal element in the contemporary global economy. Established decades ago, as key drivers of growth, their significance has only intensified. Notably, the surge in technological advancements necessitates a workforce that is not only skilled but also adaptable and competitive.

Industries across the spectrum are witnessing rapid transformations due to technological disruption, and remaining competitive entails maintaining an edge in creating, innovating, and delivering services and products. This is vital not just for businesses aiming to lead in their respective markets but also for nations seeking economic resilience and growth.

As the job landscape evolves, the demand for new and evolving skills increases. Employers now seek a combination of technical skills and soft skills such as problem-solving, critical thinking, and communication. The need for continuous learning and development is imperative to keep pace with industry changes and technological advancements.

However, challenges remain prevalent. The skills gap in various industries poses a significant threat to competitiveness at both individual and national levels. This gap is often exacerbated by educational systems that do not perfectly align with market demands. Moreover, the pressures of competitiveness can lead to issues such as workplace stress and concerns over work-life balance.

This literature review seeks to provide a thorough analysis of the importance of competitiveness and skills in the modern economy, examining the challenges and opportunities they present from various angles. The aim is to offer insights into how individuals, organisations, and policymakers can navigate these challenges effectively to harness the full potential of a skilled and competitive workforce.
This paper analyses the impact of the characteristics of regional Higher Education Systems (HES) on economic growth in European regions. HES are defined as a group of universities or academic institutions that operate within a given region.

The analysis is constructed with a dataset of 284 European regions (NUTS 2) of 30 European countries (i.e., the EU members including the United Kingdom, Norway, and Switzerland) over the period 2000-2017. The authors employ a sys-GMM econometric model that measures the potential contribution HES can have on regional economic growth through various channels, e.g., human capital and innovation. Eurostat, OECD, WHED, and InCites databases are used to create a dataset of regional economic and demographic data.

In line with previous studies, results show that an increase in the number of universities has a positive impact on economic growth in European regions. Interestingly, a higher effect is found when controlling for the universities’ size, suggesting that regional growth is mainly led by HES’ expansion in terms of size, rather than only number. Additionally, the paper highlights the importance of research quality and specialization in STEM for regional development, as research output of higher quality positively affects regional GDP per capita, and the effect of the arrival of a new university in the region tends to be larger when the new university specializes in STEM subjects.

From a policy perspective, the paper offers interesting insights into the relationship between HESs and regional economies, providing policymakers with several recommendations to harvest economic development in their region, for example, through partnerships and programmes encouraging students and academics to engage in STEM activities.
This paper analyses the labour skill and knowledge content of the product complexity measure, created by Hausmann and Hidalgo (2009). This indicator defines the complexity level of a good’s production. The more diverse and exclusive the capacities required for production, the more complex the good is considered to be.

Using data from IPUMS USA and IPUMS international databases, for both the United States and France at the NUTS3 level, the authors are creating a new indicator of occupational complexity. Finally, this new indicator is used to perform an OLS cross-sectional model in order to investigate the relationship between occupational complexity and GDP per capita.

The authors find that complex products are mainly concerning physics, engineering, and technology, computer electronics, and mathematics fields as well as jobs requiring science, mathematics, and critical thinking skills.

Concerning economic growth, they show that industries with a higher level of occupational complexity are experiencing higher real per capita GDP growth. In this paper, it is underlined that STEM and critical thinking skills and knowledge are transversal to all industries.

This paper fills a gap in the literature that did not explore the components of products’ complexity yet. It reveals the importance of measuring complex goods’ required labour capabilities for understanding countries’ abilities to target and experience higher and stable growth. This is particularly useful for policymakers who can target and foster specific abilities within their region.

The paper proposes an empirical method to assign a market value to different skills, testing the extent to which a skill’s value is determined not only by market forces of demand and supply, but also by its degree of complementarity with other skills.

The authors argue that complementarity plays a central role in the reskilling process, as new skills are typically built leveraging on existing ones. Specifically, they postulate that the higher the degree of complementarity, the higher the value of the skill considered.

The analysis employs data on 49,884 US freelance projects between 2014 and 2022, retrieved from a popular online labour platform. A skill is defined as the competency a worker needs to perform a task. Using information on hourly wage associated to each project, the skill premium is calculated using a regression approach. Specifically, 962 linear regression models (one for each skill) are estimated, controlling for supply and demand features of the labour market (proxied by using the number of workers commanding the skill and the number of projects requesting that skill, respectively), and three proxies of complementarities, capturing the number of adjacent skills, their diversity and value.

The analysis finds a strong correlation between a skill’s value and its complements. Skills tend to be more valuable if frequently combined with a diverse set of highly valuable complements, as well as with skills from a different domain. Furthermore, the authors show that the skill premium associated to Artificial Intelligence (AI) skills (21%) is considerably higher than that associated to average skills (4%).

Additionally, the paper highlights the importance of adopting data-driven approaches to improve occupational and skill taxonomies, thereby helping better identify emerging skills and occupational clusters. By leveraging information from real-time data platforms, policymakers can provide personalised skill enhancement recommendations, enhancing labour market efficiency and reducing mismatches.

Messages
1. The value of skills is influenced by supply, demand, and complementarity metrics;
2. AI skills exhibit a higher economic value than average skills;
3. Data-driven approaches can help enhancing occupational taxonomies and personalising skill development, thus improving labour market efficiency and reducing mismatches.
This paper analyses the impact of intangibles, such as software & databases, R&D, firm-specific training of employees, advertising & marketing, on firm-level productivity. The analysis looks at both goods-producing and service industries. The analysis employs data from the German part of the Community Innovation Survey (CIS) for the period 2006 to 2018, and econometrics analysis to compute intangibles contribution to firm-level productivity growth in Germany.

Results shows a highly significant and positive relationship between intangible capital and firm-level productivity for Germany, similar to previous estimates for the EU as a whole. Specifically, the authors find that non-R&D intangibles such as software & databases, training, and advertising & marketing predominantly contribute to the positive effect of intangibles on the firm-level productivity. Although non-R&D intangibles are important for both goods and services sector, they impact firm-level productivity more strongly in the services. Finally, it is also found that compared to economic competencies and software & databases, R&D does not have an equally strong effect on firm-level productivity. The only exception is in high-tech manufacturing, in which R&D is the most relevant driver of productivity.

From a policy perspective, the paper highlight that a competitiveness enhancing policy approach should go beyond supporting R&D, both through grants and tax incentives, as other intangibles are also major drivers of productivity, even often exceeding the role of R&D in many sectors, particularly in services. And the need of improving national accounting statistics to include all measurements of intangible assets.
The paper explores the role played by digital skills in green diversification in European regions, comparing their relevance for the development of green versus non-green technologies.

Relying on the concept of relatedness (suggesting that regions diversify into new activities that share cognitive proximity with their existing know-how), the paper investigates (1) how relatedness foster green diversification compared to non-green one; (2) if digital skills foster diversification for green and non-green technologies; (3) whether digital skills moderate the relationship between relatedness and green and non-green diversification.

Data from OECD REGPAT, Regional Digital Economy and Society, Eurostat LFS, and ESCO databases, covering 142 European regions between 2006 and 2013, are analysed using a panel model. The dependent variable is a dummy taking value 1 if a given region not specialised in a technology at time t appears to be specialised in that technology at time t+1, and 0 otherwise. The explanatory variables of interest are indicators capturing the regional digital skills endowment, and degree of access to ICTs infrastructure.

The results confirm that related technological capabilities foster the development of new technological specialisations, for both green and non-green technologies. However, non-green relatedness is more important for non-green diversification, while green relatedness is relevant for both. Moreover, digital skills positively affect regions' ability to specialise in new domains (with a stronger effect on green technologies), and reduce the importance of relatedness for both green and non-green diversification.

These findings highlight that digital competences hold the potential to speed up the decarbonisation process, suggesting that policies intended to foster green specialisation need to also integrate actions oriented to the creation and/or reinforcement of digital skills. By reducing the relevance of pre-existing know-how, digital competences can help counteract path dependencies, thereby providing new opportunities to foster regional diversification in different directions.

Fig. 3. Marginal effects of green and non-green relatedness on diversification at different quartiles of the e-skills distribution.
This paper looks at the dynamic macroeconomic effects of immigration on the destination country. The analysis distinguishes the impact of immigration shocks in OECD countries from that of refugee immigration in emerging and developing economies.

Their analysis draws upon data for migration flows from the OECD, UN, and World Bank. The sample covers 34 countries with 229 shock episodes over the period 1981-2016 for the analysis of migration to advanced countries (OECD), and 137 countries with 179 shock episodes over the period 1981-2017 for the refugee analysis (emerging and developing economies). Macroeconomic variables are taken from various sources: Penn World Tables, IMF’s WEO database, and OECD.

The study uses a novel approach to measure the dynamic economic effects of immigration on the destination country, combining the analysis of large immigration wave episodes with instrumental variable techniques.

Results show that in advanced countries, large immigration shocks raise output and productivity in both short and medium term, providing positive gains for the host economy. Moreover, no evidence of negative effects on aggregate employment of the native-born population is found. These results, consistent with current evidence, provide evidence that migrant labour to advanced economies contain complementarities with that of the native-born population. On the contrary, no evidence of economic effects are found for refugee flows into emerging and developing countries.

In advanced countries, large immigration waves raise domestic output and productivity in the host economy, with no negative effects on aggregate employment of the native-born population. 2. No macroeconomic effects on the host country are found for large refugee flows into emerging and developing countries.
This paper looks at the impact of EU Research & Innovation (R&I) grants on financial firm-level outcomes including employment, assets, and revenue. The analysis investigates the impact of EU R&I funding as a whole and differentiating by economic sector.

Their analysis draws upon administrative records from CORDA and financial data from ORBIS, spanning from 2010 to 2022. The study’s core sample comprises approximately 40,000 unique privately owned companies that applied for Horizon 2020 grants. The Horizon 2020 Framework Programme for Research and Innovation, a cornerstone initiative of the European Union, was designed to foster and finance research and innovation endeavors in a wide array of scientific and technological fields. This flagship funding programme, operational from 2014 to 2020, supported not only entities within the EU member states but also extended its reach globally.

To infer causality, the authors rely on Difference-in-Differences (DiD) approach, accounting for staggered treatment timing and heterogeneous treatment effect.

Results show that Horizon 2020 fuelled a remarkable 20% additional growth in employment and a 30% increase in turnover and total assets for participating firms compared to the ones that were unsuccessful despite high quality applications. However, this positive outcome was predominantly observed in firms operating within the “Information and Communication” and “Professional, Scientific, and Technical Activities” sectors. Firms in other sectors did not exhibit significant changes following the receipt of Horizon 2020 funding.

From a policy perspective, the results confirm the pivotal role played by EU R&I funding in enhancing EU competitiveness and fostering growth. Moreover, they prompt reflection regarding potential resource reallocation towards the domains that have showed the greatest efficacy, such as ICT and scientific and technical activities.
COMPETITIVENESS AND SUSTAINABLE ENERGY

Consoli, D., Costantini, V., & Pagliaunega, E. (2023). We’re in this together: Sustainable energy and economic competitiveness in the EU. Research Policy, 52(1), 104644.

The paper explores the link between trade competitiveness and energy policy, focusing on the effects of domestic policy harmonisation and low-carbon energy targets on trade.

Using data from 19 EU countries from 1990 to 2015, it analyses how a country’s policy instruments and policy mixes influence export competitiveness, employing a bilateral gravity model with sources such as the UN Comtrade database, OECD, and Eurostat to study exports in the energy efficiency devices (EEDs) sector.

The findings suggest that alignment of policy instruments significantly impacts trade performance, particularly showing that stringent energy policies lead to less dependence on the type of policy instrument used. Countries with lower energy taxation and strong public R&D in innovation attract more EED exports, while those with higher taxation see increased domestic demand for efficient devices.

Similarity in policy approaches among trading partners boosts EED exports. Additionally, variations in EED exports across EU states indicate that early adopters of clean energy gain a competitive advantage, although these leaders may encounter challenges from EU-wide policy convergence, affecting their market opportunities.

Messages:
1. Cross-country policy harmonisation is a necessary step towards the EU long-term goal of decarbonisation, the creation of a European green common knowledge space would align environmental, economic and competitiveness targets.
2. Countries with very high level of EEDs exports are increasingly gaining market shares in partner countries that are lagging in the energy transition.
3. Persistent lagging behind among less competitive economies may lead to greater technology gaps reducing market opportunities for fast-moving countries.
SKILLS SHORTAGES AND COMPETITIVENESS

The study reveals survey results regarding skill shortages and their impact on Small and Medium Enterprises (SMEs) as well as larger corporations across a variety of countries, including EU member states and non-EU countries like the US, Japan, Canada, and Switzerland. It underscores the vital importance of skilled labour in promoting innovation and competitiveness. Nonetheless, the growing gap between the demand for labour and the availability of skills presents difficulties for SMEs in recruiting suitable staff.

Within EU countries, the extent of the labour mismatch varies, with only 11% reporting ease in finding the appropriate workforce. Skill shortages manifest in various ways for SMEs, with reasons including a lack of applicants (56%), the absence of suitable candidates (54%), and the inability to offer competitive benefits in comparison to other employers (21%). In the context of skill shortages, certain roles within SMEs are particularly affected. Notably, there is a significant shortfall of technicians, with 33% of SMEs employing them and 42% reporting skill shortages. Furthermore, among SMEs employing customer care experts, 23% report skill shortages. Additionally, SMEs experience pronounced deficits in areas such as R&D and IT, with 20% and 18% respectively finding it challenging to recruit qualified professionals.

These skill shortages have substantial repercussions for SMEs, with the most severe being increased workloads (48%) and loss of sales or difficulties in expanding sales (31%), followed by decreased profitability and growth (25%) and reduced productivity (25%). However, reduced productivity is cited as the second most significant impact for medium-sized companies (30%) and large companies (25%).

Previous initiatives to mitigate skill shortages have included enhancing working conditions, training/reskilling, retention efforts, and recruitment from abroad.

1. Skill shortages pose significant challenges for SMEs, affecting their capacity to foster innovation and maintain competitiveness.
2. Confronted with skill shortages, organisations may face consequences such as increased workloads and diminished productivity.
STI POLICY AND COMPETITIVENESS

The study delves into recent and forthcoming trends within and surrounding STI domains and their ramifications for policymakers globally. Moreover, it scrutinises the rise of China innovation ecosystem, and escalating tensions over technological independence among competing economies.

The report outlines the trajectory of R&D expenditure since 2000, highlighting a significant rise in China’s investment, underscoring its commitment to securing a leading position in the research and innovation arena. China’s increased R&D spending has resulted in a surge in the number of researchers (2.28 million in 2020, compared to 1.89 million in the EU and 1.59 million in the US) and publications (7 million from China, compared to 500,000 from the US), although the number of researchers per capita still trails behind the US and EU.

OECD countries have traditionally held a competitive edge over emerging economies due to their pioneering role in scientific research and innovation. Nevertheless, China’s rapid advancement in cutting-edge technologies, such as semiconductors and AI, has heightened strategic rivalry. The report raises concerns about the erosion of long-held beliefs in cooperation and shared values within the scientific community, as more policy agendas pivot towards technological self-reliance and sovereignty. This paradigm shift threatens to disrupt existing technology and research ecosystems.

To bolster national technological capabilities and mitigate vulnerabilities, countries implement three principal policy measures. Protective actions include export controls and research security measures to limit technology transfer. Promotional strategies, such as industrial policies, are designed to bolster domestic capacities and diminish dependence on foreign suppliers. Projection efforts, encompassing international STI alliances and technical standards, encourage collaboration and diversify technology supply chains, rooted in shared values and interests.
REFERENCES

Consoli, D., Costantini, V., & Paglialunga, E. (2023). We’re in this together: Sustainable energy and economic competitiveness in the EU. Research Policy, 52(1), 104644.

Philipp Engler, Margaux MacDonald, Roberto Piazza, Galen Sher, (2023) The Macroeconomic Effects of Large Immigration Waves, IMF working paper.

Getting in touch with the EU

IN PERSON
All over the European Union there are hundreds of Europe Direct information centres. You can find the address of the centre nearest you at: https://europa.eu/european-union/contact_en

ON THE PHONE OR BY EMAIL
Europe Direct is a service that answers your questions about the European Union. You can contact this service
- by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls),
- at the following standard number: +32 22999696 or
- by email via: https://europa.eu/european-union/contact_en

Finding information about the EU

ONLINE
Information about the European Union in all the official languages of the EU is available on the Europa website at: https://europa.eu/european-union/index_en

EU PUBLICATIONS
You can download or order free and priced EU publications at: https://publications.europa.eu/en/publications. Multiple copies of free publications may be obtained by contacting Europe Direct or your local information centre (see https://europa.eu/european-union/contact_en)

EU LAW AND RELATED DOCUMENTS
For access to legal information from the EU, including all EU law since 1952 in all the official language versions, go to EUR-Lex at: http://eur-lex.europa.eu

OPEN DATA FROM THE EU
The EU Open Data Portal (http://data.europa.eu/euodp/en) provides access to datasets from the EU. Data can be downloaded and reused for free, for both commercial and non-commercial purposes.
The “Quarterly R&I Literature Review” provides a brief summary of a selection of recent publications on R&I economics and policy.

The aim of the Review is to inform policymakers on the latest findings from the literature that links R&I economics to R&I policy.

The Literature Review, together with the Working Papers and the Policy Briefs, is part of the “R&I Paper Series” which serves as a repository of analytical papers that supports an evidence-based EU policy, for R&I and beyond.

Studies and reports